vector angle
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 20)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongjiang Qian ◽  
Xiucheng Dong ◽  
Zhengyu Zhang

In global skin-friction measurement of aircraft, the fluorescent oil film method can characterize the distribution of skin friction well. However, in an actual wind tunnel test, the wing of the aircraft will inevitably produce corresponding vibrations due to the influence of wind, which will change the relative position between fluorescent oil film and UV (ultraviolet) excitation light source (position fixed). This also directly affects gray value imaging of fluorescent oil films. Based on this, a mathematical model is established to judge the stability of the gray value of fluorescent oil film in this vibrational environment; then, the model can be solved to obtain the vibrational range constraint that enables the gray value of fluorescent oil film to be stabilized. In order to simplify the calculation process, the light vector angle is used to describe the constraint, which also makes the results more intuitive. Through experimental analysis and demonstration, the prediction accuracy of this model can reach 95.61%, which has certain practical engineering application significance.


2021 ◽  
pp. 109442812110423
Author(s):  
Kyle J. Emich ◽  
Li Lu ◽  
Amanda Ferguson ◽  
Randall S. Peterson ◽  
Michael McCourt

Research methods for studying team composition tend to employ either a variable-centered or person-centered approach. The variable-centered approach allows scholars to consider how patterns of attributes between team members influence teams, while the person-centered approach allows scholars to consider how variation in multiple attributes within team members influences subgroup formation and its effects. Team composition theory, however, is becoming increasingly sophisticated, assuming variation on multiple attributes both within and between team members—for example, in predicting how a team functions differently when its most assertive members are also optimistic rather than pessimistic. To support this new theory, we propose an attribute alignment approach, which complements the variable-centered and person-centered approaches by modeling teams as matrices of their members and their members’ attributes. We first demonstrate how to calculate attribute alignment by determining the vector norm and vector angle between team members’ attributes. Then, we demonstrate how the alignment of team member personality attributes (neuroticism and agreeableness) affects team relationship conflict. Finally, we discuss the potential of using the attribute alignment approach to enrich broader team research.


2021 ◽  
Vol 5 (5) ◽  
pp. 775-801
Author(s):  
Yuri Appolonievich Sazonov ◽  
Mikhail Albertovich Mokhov ◽  
Inna Vladimirovna Gryaznova ◽  
Victoria Vasilievna Voronova ◽  
Khoren Arturovich Tumanyan ◽  
...  

This article presents the research results that aim to develop promising mesh turbomachines equipped with jet control systems. The turbomachines operating in difficult conditions in oil and gas production are mainly considered. At the same time, some research results can be used in other production branches, including power engineering and transport. Three-dimensional models for computer simulation of net turbines and jet control systems were developed. Prototypes and micromodels were created to test the performance of mesh turbines and jet control systems using additive technologies. A methodological approach is proposed to create a classification of jet control systems considering their design and technological features. In the course of numerical experiments, the extreme conditions of fluid and gas outflow through a nozzle equipped with a velocity vector control system, in the control range of adjustment of the velocity vector deflection angle from + 90o to -90o within a geometric hemisphere, have been considered for the first time. It was also shown that when using a dual-channel nozzle, there are possibilities to adjust the velocity vector angle (thrust vector) in the range of + 180o to -180owithin the geometric sphere. Compared with the known variants, the control range of the velocity vector angle is increased by nine times. These calculated data are presented in addition to the previously published results of physical laboratory experiments. Preliminary results of numerical experiments show the possibility of creating a new theory in the field of mesh turbines and jet systems. Patents support the novelty of the developed technical solutions. Doi: 10.28991/esj-2021-01311 Full Text: PDF


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Zhengqi Wang ◽  
Liusen Sheng ◽  
Qunhai Huo ◽  
Sipeng Hao

Soft open point (SOP) is a key power electronic device to improve the flexibility and stability of the distribution network and is becoming a research hotspot. The traditional double closed-loop control of SOP has a complex structure, difficult process of parameter design, and poor output power quality. To solve these problems, finite control set model predictive control (FCS-MPC) has been adopted. Since FCS-MPC involves a large amount of calculation and experiences delay in current tracking, an improved FCS-MPC with delay compensation is proposed for three-port SOP in this paper to replace the inner loop current control strategy. Improved model predictive control combines the two-step prediction method based on the voltage vector and vector angle compensation method. The vector method is used to construct a mathematical model and a prediction model of three-port SOP. Based on FCS-MPC, the two-step prediction method that takes voltage as the target is used to compensate for the current delay problem, and the amount of calculation is reduced by converting the control target. Meanwhile, the vector angle compensation method is used to compensate the future reference value. Finally, a simulation model is built in MATLAB/Simulink. The simulation results under steady state and dynamic conditions show that the proposed strategy can effectively improve the current delay and reduce the amount of calculation. Furthermore, it has better current tracking accuracy and faster dynamic response speed.


2021 ◽  
Vol 40 (5) ◽  
pp. 10285-10306
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

In the past two decades, multi-objective evolutionary algorithms (MOEAs) have achieved great success in solving two or three multi-objective optimization problems. As pointed out in some recent studies, however, MOEAs face many difficulties when dealing with many-objective optimization problems(MaOPs) on account of the loss of the selection pressure of the non-dominant candidate solutions toward the Pareto front and the ineffective design of the diversity maintenance mechanism. This paper proposes a many-objective evolutionary algorithm based on vector guidance. In this algorithm, the value of vector angle distance scaling(VADS) is applied to balance convergence and diversity in environmental selection. In addition, tournament selection based on the aggregate fitness value of VADS is applied to generate a high quality offspring population. Besides, we adopt an adaptive strategy to adjust the reference vector dynamically according to the scales of the objective functions. Finally, the performance of the proposed algorithm is compared with five state-of-the-art many-objective evolutionary algorithms on 52 instances of 13 MaOPs with diverse characteristics. Experimental results show that the proposed algorithm performs competitively when dealing many-objective with different types of Pareto front.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 231
Author(s):  
Chengyu Li ◽  
Ziming Wang ◽  
Sheng Shu ◽  
Wei Tang

Recently, grating-structured triboelectric nanogenerators (TENG) operating in freestanding mode have been the subject of intensive research. However, standard TENGs based on interdigital electrode structures are unable to realize real-time sensing of the direction of the freestanding electrode movement. Here, a newly designed TENG, consisting of one group of grating freestanding electrodes and three groups of interdigitated induction electrodes with the identical period, has been demonstrated as a self-powered vector angle/displacement sensor (SPVS), capable of distinguishing the real-time direction of the freestanding electrode displacement. Thanks to the unique coupling effect between triboelectrification and electrostatic induction, periodic alternating voltage signals are generated in response to the rotation/sliding movement of the top freestanding electrodes on the bottom electrodes. The output peak-to-peak voltage of the SPVS can reach as high as 300 V at the rotation rate of 48 rpm and at the sliding velocity of 0.1 m/s, respectively. The resolution of the sensor reaches 8°/5 mm and can be further enhanced by decreasing the width of the electrodes. This present work not only demonstrates a novel method for angle/displacement detection but also greatly expands the applicability of TENG as self-powered vector sensors.


Author(s):  
Naveena Budda ◽  
K. Meenakshi ◽  
Padmavathi Kora ◽  
G.V. Subba Reddy ◽  
K. Swaraja

2020 ◽  
Vol 223 (22) ◽  
pp. jeb219832
Author(s):  
Tsyr-Huei Chiou ◽  
Ching-Wen Wang

ABSTRACTStomatopods, or mantis shrimp, are the only animal group known to possess circular polarization vision along with linear polarization vision. By using the rhabdomere of a distally located photoreceptor as a wave retarder, the eyes of mantis shrimp are able to convert circularly polarized light into linearly polarized light. As a result, their circular polarization vision is based on the linearly polarized light-sensitive photoreceptors commonly found in many arthropods. To investigate how linearly and circularly polarized light signals might be processed, we presented a dynamic polarized light stimulus while recording from photoreceptors or lamina neurons in intact mantis shrimp Haptosquilla pulchella. The results indicate that all the circularly polarized light-sensitive photoreceptors also showed differential responses to the changing e-vector angle of linearly polarized light. When stimulated with linearly polarized light of varying e-vector angle, most photoreceptors produced a concordant sinusoidal response. In contrast, some lamina neurons doubled the response frequency in reacting to linearly polarized light. These responses resembled a rectified sum of two-channel linear polarization-sensitive photoreceptors, indicating that polarization visual signals are processed at or before the first optic lobe. Noticeably, within the lamina, there was one type of neuron that showed a steady depolarization response to all stimuli except right-handed circularly polarized light. Together, our findings suggest that, between the photoreceptors and lamina neurons, linearly and circularly polarized light may be processed in parallel and differently from one another.


Sign in / Sign up

Export Citation Format

Share Document