scholarly journals Network organisation and the dynamics of tubules in the endoplasmic reticulum

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hannah T. Perkins ◽  
Victoria J. Allan ◽  
Thomas A. Waigh

AbstractThe endoplasmic reticulum (ER) is a eukaryotic subcellular organelle composed of tubules and sheet-like areas of membrane connected at junctions. The tubule network is highly dynamic and undergoes rapid and continual rearrangement. There are currently few tools to evaluate network organisation and dynamics. We quantified ER network organisation in Vero and MRC5 cells, and developed an analysis workflow for dynamics of established tubules in live cells. The persistence length, tubule length, junction coordination number and angles of the network were quantified. Hallmarks of imbalances in ER tension, indications of interactions with microtubules and other subcellular organelles, and active dynamics were observed. Clear differences in dynamic behaviour were observed for established tubules at different positions within the cell using itemset mining. We found that tubules with activity-driven fluctuations were more likely to be located away from the cell periphery and a population of peripheral tubules with no signs of active motion was found.

2020 ◽  
Author(s):  
H. Perkins ◽  
P. Ducluzaux ◽  
P. Woodman ◽  
V. Allan ◽  
T. Waigh

ABSTRACTThe endoplasmic reticulum (ER) is a eukaryotic subcellular organelle composed of tubules and sheet-like areas of membrane connected at junctions. The tubule network is highly dynamic and undergoes rapid and continual rearrangement. There are currently few tools to evaluate network organisation and dynamics. We quantified ER network organisation in Vero and MRC5 cells, and developed a classification system for ER dynamics in live cells. The persistence length, tubule length, junction coordination number and angles of the network were quantified. Hallmarks of imbalances in ER tension, indications of interactions with microtubules and other subcellular organelles, and active reorganisation and dynamics were observed. Live cell ER tubule dynamics were classified using a Gaussian mixture model, defining tubule motion as active or thermal and conformational phase space analysis allowed this classification to be refined by tubule curvature states.STATEMENT OF SIGNIFICANCEThe endoplasmic reticulum (ER), a subcellular organelle, is an underexplored real-world example of active matter. Many processes essential to cell survival are performed by the ER, the efficacy of which may depend on its organisation and dynamics. Abnormal ER morphology is linked to diseases such as hereditary spastic paraplegias and it is possible that the dynamics are also implicated. Therefore, analysing the ER network in normal cells is important for the understanding of disease-related alterations. In this work, we outline the first thorough quantification methods for determining ER organisation and dynamics, deducing that tubule motion has a binary classification as active or thermal. Active reorganisation and dynamics along with indications of tension imbalances and membrane contact sites were observed.


1985 ◽  
Vol 225 (1) ◽  
pp. 51-58 ◽  
Author(s):  
T Saermark ◽  
N Flint ◽  
W H Evans

Endosome fractions were isolated from rat liver homogenates on the basis of the subcellular distribution of circulating ligands, e.g. 125I-asialotransferrin internalized by hepatocytes by a receptor-mediated process. The distribution of endocytosed 125I-asialotransferrin 1-2 min and 15 min after uptake by liver and a monensin-activated Mg2+-dependent ATPase activity coincided on linear gradients of sucrose and Nycodenz. The monensin-activated Mg2+-ATPase was enriched relative to the liver homogenates up to 60-fold in specific activity in the endosome fractions. Contamination of the endosome fractions by lysosomes, endoplasmic reticulum, mitochondria, plasma membranes and Golgi-apparatus components was low. By use of 9-aminoacridine, a probe for pH gradients, the endosome vesicles were shown to acidify on addition of ATP. Acidification was reversed by addition of monensin. The results indicate that endosome fractions contain an ATP-driven proton pump. The ionophore-activated Mg2+-ATPase in combination with the presence of undegraded ligands in the endosome fractions emerge as linked markers for this new subcellular organelle.


2009 ◽  
Vol 134 (6) ◽  
pp. 489-521 ◽  
Author(s):  
Fraser J. Moss ◽  
P.I. Imoukhuede ◽  
Kimberly Scott ◽  
Jia Hu ◽  
Joanna L. Jankowsky ◽  
...  

The mouse γ-aminobutyric acid (GABA) transporter mGAT1 was expressed in neuroblastoma 2a cells. 19 mGAT1 designs incorporating fluorescent proteins were functionally characterized by [3H]GABA uptake in assays that responded to several experimental variables, including the mutations and pharmacological manipulation of the cytoskeleton. Oligomerization and subsequent trafficking of mGAT1 were studied in several subcellular regions of live cells using localized fluorescence, acceptor photobleach Förster resonance energy transfer (FRET), and pixel-by-pixel analysis of normalized FRET (NFRET) images. Nine constructs were functionally indistinguishable from wild-type mGAT1 and provided information about normal mGAT1 assembly and trafficking. The remainder had compromised [3H]GABA uptake due to observable oligomerization and/or trafficking deficits; the data help to determine regions of mGAT1 sequence involved in these processes. Acceptor photobleach FRET detected mGAT1 oligomerization, but richer information was obtained from analyzing the distribution of all-pixel NFRET amplitudes. We also analyzed such distributions restricted to cellular subregions. Distributions were fit to either two or three Gaussian components. Two of the components, present for all mGAT1 constructs that oligomerized, may represent dimers and high-order oligomers (probably tetramers), respectively. Only wild-type functioning constructs displayed three components; the additional component apparently had the highest mean NFRET amplitude. Near the cell periphery, wild-type functioning constructs displayed the highest NFRET. In this subregion, the highest NFRET component represented ∼30% of all pixels, similar to the percentage of mGAT1 from the acutely recycling pool resident in the plasma membrane in the basal state. Blocking the mGAT1 C terminus postsynaptic density 95/discs large/zona occludens 1 (PDZ)-interacting domain abolished the highest amplitude component from the NFRET distributions. Disrupting the actin cytoskeleton in cells expressing wild-type functioning transporters moved the highest amplitude component from the cell periphery to perinuclear regions. Thus, pixel-by-pixel NFRET analysis resolved three distinct forms of GAT1: dimers, high-order oligomers, and transporters associated via PDZ-mediated interactions with the actin cytoskeleton and/or with the exocyst.


2020 ◽  
Author(s):  
Rory K. M. Long ◽  
Kathleen P. Moriarty ◽  
Ben Cardoen ◽  
Guang Gao ◽  
A. Wayne Vogl ◽  
...  

AbstractThe endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of endoplasmic reticulum (ER) membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to identify ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and may be of use to screen for inhibitors of infection by ER-reorganizing viruses.


2000 ◽  
Vol 11 (4) ◽  
pp. 1329-1343 ◽  
Author(s):  
Robert P. Brendza ◽  
Kathy B. Sheehan ◽  
F.R. Turner ◽  
William M. Saxton

Null mutations in the Drosophila Kinesin heavy chain gene (Khc), which are lethal during the second larval instar, have shown that conventional kinesin is critical for fast axonal transport in neurons, but its functions elsewhere are uncertain. To test other tissues, single imaginal cells in young larvae were rendered null for Khc by mitotic recombination. Surprisingly, the null cells produced large clones of adult tissue. The rates of cell proliferation were not reduced, indicating that conventional kinesin is not essential for cell growth or division. This suggests that in undifferentiated cells vesicle transport from the Golgi to either the endoplasmic reticulum or the plasma membrane can proceed at normal rates without conventional kinesin. In adult eye clones produced by null founder cells, there were some defects in differentiation that caused mild ultrastructural changes, but they were not consistent with serious problems in the positioning or transport of endoplasmic reticulum, mitochondria, or vesicles. In contrast, defective cuticle deposition by highly elongated Khc null bristle shafts suggests that conventional kinesin is critical for proper secretory vesicle transport in some cell types, particularly ones that must build and maintain long cytoplasmic extensions. The ubiquity and evolutionary conservation of kinesin heavy chain argue for functions in all cells. We suggest interphase organelle movements away from the cell center are driven by multilayered transport mechanisms; that is, individual organelles can use kinesin-related proteins and myosins, as well as conventional kinesin, to move toward the cell periphery. In this case, other motors can compensate for the loss of conventional kinesin except in cells that have extremely long transport tracks.


2018 ◽  
Vol 47 (44) ◽  
pp. 15646-15650 ◽  
Author(s):  
Sanjay K. Verma ◽  
Pratibha Kumari ◽  
Shagufi Naz Ansari ◽  
Mohd Ovais Ansari ◽  
Dondinath Deori ◽  
...  

Synthesis of new organometallic MIC based mononuclear Pd(ii) complex 1, specifically target ER of live cells and have fluorescence recovery after photobleaching (FRAP) property.


Sign in / Sign up

Export Citation Format

Share Document