scholarly journals Study on landslide susceptibility mapping based on rock–soil characteristic factors

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianyu Yu ◽  
Kaixiang Zhang ◽  
Yingxu Song ◽  
Weiwei Jiang ◽  
Jianguo Zhou

AbstractThis study introduces four rock–soil characteristics factors, that is, Lithology, Rock Structure, Rock Infiltration, and Rock Weathering, which based on the properties of rock formations, to predict Landslide Susceptibility Mapping (LSM) in Three Gorges Reservoir Area from Zigui to Badong. Logistic regression, artificial neural network, support vector machine is used in LSM modeling. The study consists of three main steps. In the first step, these four factors are combined with the 11 basic factors to form different factor combinations. The second step randomly selects training (70% of the total) and validation (30%) datasets out of grid cells corresponding to landslide and non-landslide locations in the study area. The final step constructs the LSM models to obtain different landslide susceptibility index maps and landslide susceptibility zoning maps. The specific category precision, receiver operating characteristic curve, and 5 other statistical evaluation methods are used for quantitative evaluations. The evaluation results show that, in most cases, the result based on Rock Structure are better than the result obtained by traditional method based on Lithology, have the best performance. To further study the influence of rock–soil characteristic factors on the LSM, these four factors are divided into “Intrinsic attribute factors” and “External participation factors” in accordance with the participation of external factors, to generate the LSMs. The evaluation results show that the result based on Intrinsic attribute factors are better than the result based on External participation factors, indicating the significance of Intrinsic attribute factors in LSM. The method proposed in this study can effectively improve the scientificity, accuracy, and validity of LSM.

2020 ◽  
Author(s):  
Lanbing Yu ◽  
Yang Wang ◽  
Yujie Zhang

<p>The landslide development laws vary in different landslide-prone areas, hence the susceptibility models often perform in varied ways in different regions. Due to the periodic regulation of reservoir water level, a large number of landslides occur in the Three Gorges Reservoir area (TGRA). These landslides seriously threaten the safety of local residents and their property. It is crucial to find the model that can generate a landslide susceptibility map with higher accuracy in the TGRA. The main objective of this study was to explore the preference of machine learning models for landslide susceptibility mapping in the TGRA.</p><p>The Wushan segment of TGRA was selected as a case study, which is located in the middle reaches of the TGRA, the southwest of China. In this study, 165 landslides were identified and 14 landslide causal factors were constructed from different data sources at first, including altitude, slope, aspect, curvature, plan curvature, profile curvature, stream power index, topographic wetness index (TWI), terrain roughness index, lithology, bedding structure, distance to faults, distance to rivers, and distance to gully. Subsequently, multicollinearity analysis and information gain ratio model were applied to select landslide causal factors. After removing five factors (altitude, TWI, profile curvature, plan curvature, curvature), the landslide susceptibility mapping using the calculated results of four models, which were support vector machines (SVM), artificial neural networks, classification and regression tree, and logistic regression. Finally, the accuracy of the four models was evaluated and compared using the accuracy statistic methods and the receiver operating characteristic (ROC). The results of accuracy analysis showed that the SVM model performed the best. At the same time, the SVM performance behavior for susceptibility modelling in other areas were collected. In these regions, the accuracy of SVM was always larger than 0.8. We could see that SVM performed acceptably in different regions, and thus it can be used as a recommended model in TGRA and other landslide-prone regions.</p><p>In this study area, a total of 62% of the landslides were within 300 m from the Yangtze River, and the distance to rivers was the most important factor. The impoundment of the TGRA impacted the landslide development in three aspects: (1) the long-term immersion of reservoir water gradually reducing the strength of rock (soil) at the saturated zone (mostly near the Yangtze river), reducing the resistance force of landslide; (2) the strong dynamic action of water enhancing the lateral erosion on the bank slope, changing the slope shape, and thus reducing the slope stability; (3) the periodic fluctuation of the reservoir water making the self-weight, static, and dynamic water pressure of the landslide change, which could increase the resistance force or reduce the sliding force of the landslide and even cause overall instability and damage. Hence, in order to reduce the losses caused by landslides in TGRA, we should pay more attention to the early warning of reservoir bank landslides.</p>


2019 ◽  
Vol 11 (22) ◽  
pp. 6323 ◽  
Author(s):  
Pham ◽  
Prakash ◽  
Chen ◽  
Ly ◽  
Ho ◽  
...  

The main objective of this study is to propose a novel hybrid model of a sequential minimal optimization and support vector machine (SMOSVM) for accurate landslide susceptibility mapping. For this task, one of the landslide prone areas of Vietnam, the Mu Cang Chai District located in Yen Bai Province was selected. In total, 248 landslide locations and 15 landslide-affecting factors were selected for landslide modeling and analysis. Predictive capability of SMOSVM was evaluated and compared with other landslide models, namely a hybrid model of the cascade generalization optimization-based support vector machine (CGSVM), individual models, such as support vector machines (SVM) and naïve Bayes trees (NBT). For validation, different quantitative criteria such as statistical based methods and area under the receiver operating characteristic curve (AUC) technique were used. Results of the study show that the SMOSVM model (AUC = 0.824) has the highest performance for landslide susceptibility mapping, followed by CGSVM (AUC = 0.815), SVM (AUC = 0.804), and NBT (AUC = 0.800) models, respectively. Thus, the proposed novel SMOSVM model is a promising method for better landslide susceptibility mapping and prediction, which can be applied also in other landslide prone areas.


2019 ◽  
Vol 9 (22) ◽  
pp. 4756 ◽  
Author(s):  
Lanbing Yu ◽  
Ying Cao ◽  
Chao Zhou ◽  
Yang Wang ◽  
Zhitao Huo

Landslides are destructive geological hazards that occur all over the world. Due to the periodic regulation of reservoir water level, a large number of landslides occur in the Three Gorges Reservoir area (TGRA). The main objective of this study was to explore the preference of machine learning models for landslide susceptibility mapping in the TGRA. The Wushan segment of TGRA was selected as a case study. At first, 165 landslides were identified and a total of 14 landslide causal factors were constructed from different data sources. Multicollinearity analysis and information gain ratio (IGR) model were applied to select landslide causal factors. Subsequently, the landslide susceptibility mapping using the calculated results of four models, namely, support vector machines (SVM), artificial neural networks (ANN), classification and regression tree (CART), and logistic regression (LR). The accuracy of these four maps were evaluated using the receive operating characteristic (ROC) and the accuracy statistic. Results revealed that eliminating the inconsequential factors can perhaps improve the accuracy of landslide susceptibility modelling, and the SVM model had the best performance in this study, providing strong technical support for landslide susceptibility modelling in TGRA.


2021 ◽  
Vol 10 (2) ◽  
pp. 93
Author(s):  
Wei Xie ◽  
Xiaoshuang Li ◽  
Wenbin Jian ◽  
Yang Yang ◽  
Hongwei Liu ◽  
...  

Landslide susceptibility mapping (LSM) could be an effective way to prevent landslide hazards and mitigate losses. The choice of conditional factors is crucial to the results of LSM, and the selection of models also plays an important role. In this study, a hybrid method including GeoDetector and machine learning cluster was developed to provide a new perspective on how to address these two issues. We defined redundant factors by quantitatively analyzing the single impact and interactive impact of the factors, which was analyzed by GeoDetector, the effect of this step was examined using mean absolute error (MAE). The machine learning cluster contains four models (artificial neural network (ANN), Bayesian network (BN), logistic regression (LR), and support vector machines (SVM)) and automatically selects the best one for generating LSM. The receiver operating characteristic (ROC) curve, prediction accuracy, and the seed cell area index (SCAI) methods were used to evaluate these methods. The results show that the SVM model had the best performance in the machine learning cluster with the area under the ROC curve of 0.928 and with an accuracy of 83.86%. Therefore, SVM was chosen as the assessment model to map the landslide susceptibility of the study area. The landslide susceptibility map demonstrated fit with landslide inventory, indicated the hybrid method is effective in screening landslide influences and assessing landslide susceptibility.


2021 ◽  
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Luyao Li ◽  
Xiangqiang Zeng

Abstract Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced Convolutional Neural Network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected the Jiuzhaigou region in Sichuan Province, China as the study area. A total number of 710 landslides and 12 predisposing factors were stacked to form spatial datasets for LSM. The ROC analysis and several statistical metrics, such as accuracy, root mean square error (RMSE), Kappa coefficient, sensitivity, and specificity were used to evaluate the performance of the models in the training and validation datasets. Finally, the trained models were calculated and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine-learning based models have a satisfactory performance (AUC: 85.72% − 90.17%). The CNN based model exhibits excellent good-of-fit and prediction capability, and achieves the highest performance (AUC: 90.17%) but also significantly reduces the salt-of-pepper effect, which indicates its great potential of application to LSM.


2020 ◽  
Vol 198 ◽  
pp. 03023
Author(s):  
Xin Yang ◽  
Rui Liu ◽  
Luyao Li ◽  
Mei Yang ◽  
Yuantao Yang

Landslide susceptibility mapping is a method used to assess the probability and spatial distribution of landslide occurrences. Machine learning methods have been widely used in landslide susceptibility in recent years. In this paper, six popular machine learning algorithms namely logistic regression, multi-layer perceptron, random forests, support vector machine, Adaboost, and gradient boosted decision tree were leveraged to construct landslide susceptibility models with a total of 1365 landslide points and 14 predisposing factors. Subsequently, the landslide susceptibility maps (LSM) were generated by the trained models. LSM shows the main landslide zone is concentrated in the southeastern area of Wenchuan County. The result of ROC curve analysis shows that all models fitted the training datasets and achieved satisfactory results on validation datasets. The results of this paper reveal that machine learning methods are feasible to build robust landslide susceptibility models.


2020 ◽  
Vol 10 (11) ◽  
pp. 4016 ◽  
Author(s):  
Xudong Hu ◽  
Han Zhang ◽  
Hongbo Mei ◽  
Dunhui Xiao ◽  
Yuanyuan Li ◽  
...  

Landslide susceptibility mapping is considered to be a prerequisite for landslide prevention and mitigation. However, delineating the spatial occurrence pattern of the landslide remains a challenge. This study investigates the potential application of the stacking ensemble learning technique for landslide susceptibility assessment. In particular, support vector machine (SVM), artificial neural network (ANN), logical regression (LR), and naive Bayes (NB) were selected as base learners for the stacking ensemble method. The resampling scheme and Pearson’s correlation analysis were jointly used to evaluate the importance level of these base learners. A total of 388 landslides and 12 conditioning factors in the Lushui area (Southwest China) were used as the dataset to develop landslide modeling. The landslides were randomly separated into two parts, with 70% used for model training and 30% used for model validation. The models’ performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and statistical measures. The results showed that the stacking-based ensemble model achieved an improved predictive accuracy as compared to the single algorithms, while the SVM-ANN-NB-LR (SANL) model, the SVM-ANN-NB (SAN) model, and the ANN-NB-LR (ANL) models performed equally well, with AUC values of 0.931, 0.940, and 0.932, respectively, for validation stage. The correlation coefficient between the LR and SVM was the highest for all resampling rounds, with a value of 0.72 on average. This connotes that LR and SVM played an almost equal role when the ensemble of SANL was applied for landslide susceptibility analysis. Therefore, it is feasible to use the SAN model or the ANL model for the study area. The finding from this study suggests that the stacking ensemble machine learning method is promising for landslide susceptibility mapping in the Lushui area and is capable of targeting areas prone to landslides.


Sign in / Sign up

Export Citation Format

Share Document