scholarly journals Trehalose and glucose levels regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum Harris

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guang Wang ◽  
Jing-Jiang Zhou ◽  
Yan Li ◽  
Yuping Gou ◽  
Peter Quandahor ◽  
...  

AbstractTrehalose serves multifarious roles in growth and development of insects. In this study, we demonstrated that the high trehalose diet increased the glucose content, and high glucose diet increased the glucose content but decreased the trehalose content of Acyrthosiphon pisum. RNA interference (RNAi) of trehalose-6-phosphate synthase gene (ApTPS) decreased while RNAi of trehalase gene (ApTRE) increased the trehalose and glucose contents. In the electrical penetration graph experiment, RNAi of ApTPS increased the percentage of E2 waveform and decreased the percentage of F and G waveforms. The high trehalose and glucose diets increased the percentage of E2 waveform of A. pisum red biotype. The correlation between feeding behavior and sugar contents indicated that the percentage of E1 and E2 waveforms were increased but np, C, F and G waveforms were decreased in low trehalose and glucose contents. The percentage of np, E1 and E2 waveforms were reduced but C, F and G waveforms were elevated in high trehalose and glucose contents. The results suggest that the A. pisum with high trehalose and glucose contents spent less feeding time during non-probing phase and phloem feeding phase, but had an increased feeding time during probing phase, stylet work phase and xylem feeding phase.

2021 ◽  
Author(s):  
Guang Wang ◽  
Jing-Jiang Zhou ◽  
Yan Li ◽  
Yuping Gou ◽  
Peter Quandahor ◽  
...  

Abstract Trehalose serves multifarious roles in growth and development in insects. We have previously shown that trehalose regulates Acyrthosiphon pisum chitin metabolism. Accordingly, we hypothesize here that trehalose-regulated A. pisum responses in chitin metabolism might also include trehalose-regulated feeding behaviour to involve in chitin metabolism. When RNA interference (RNAi) of trehalose-6-phosphate synthase gene increased the percentage of E2 (i.e. phloem ingestion) waveform and decreased the percentage of F (i.e. stylet work) and G (i.e. xylem ingestion) waveforms compared with the control A. pisum. RNAi of trehalase gene did not affect the percentage of each waveform compared with the control A. pisum. The high trehalose and glucose diets increased the percentage of E2 waveform of red A. pisum. The multiple nonlinear regression shown that the both low trehalose and glucose levels increased the percentage of np (i.e. non-probing), E1 (i.e. phloem salivation), and E2 waveforms. The high or low trehalose:glucose (T:G) ratio decreased the percentage of np, E1, and E2. Interestingly, the percentage of C (i.e. probing), F and, G waveforms were increased at low, low, and high T:G ratio, respectively. The results provided strong evidence that the trehalose and glucose levels regulate A. pisum feeding behavior.


2013 ◽  
Vol 103 (6) ◽  
pp. 683-689 ◽  
Author(s):  
K. Jung Nam ◽  
G. Powell ◽  
J. Hardie

AbstractProbing behaviour (prior to parturition) and parturition of two clones (PS01 and N116) of the pea aphid, Acyrthosiphon pisum on two genotypes (near-isogenic lines (NILs)) (Q174_5.13 and Q174_9.10) of Medicago truncatula were investigated using electrical penetration graph (EPG) coupled with simultaneous visual monitoring for parturition. Line Q174_5.13 has been reported to show a phloem-based resistance to feeding in the clone PS01 but to be susceptible to the clone N116, whereas Q174_9.10 has shown to be susceptible to both aphid clones. The time taken to first parturition by clone PS01 was similar on Q174_5.13 and Q174_9.10. Prior to parturition, no aphids on Q174_5.13 contacted phloem, but 5% of the aphids on Q174_9.10 showed phloem salivation (recognized by EPG pattern E1). No phloem contact was observed with aphid clone N116 on either NILs of Medicago before first parturition occurred, and the time taken to first larviposition was similar on Q174_5.13 and Q174_9.10. The results indicate that the initiation of parturition of the clone PS01 and N116 on both NILs does not require the phloem contact and seems unchanged by a phloem-based resistance mechanism to feeding on Medicago. This finding suggests that host recognition and decisions about parturition occur before phloem contact or ingestion, and act independently on R-gene-mediated resistance.


Peptides ◽  
2021 ◽  
pp. 170596
Author(s):  
Sohaib Shahid ◽  
Yan Shi ◽  
Chunhong Yang ◽  
Jiangjie Li ◽  
Muhammad Yasir Ali ◽  
...  

2011 ◽  
Vol 51 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Bożena Kordan ◽  
Lesław Lahuta ◽  
Katarzyna Dancewicz ◽  
Wojciech Sądej ◽  
Beata Gabryś

Effect of Lupin Cyclitols on Pea Aphid Probing BehaviourThe cyclitols: D-pinitol, D-chiro-inositol are naturally present in the tissues ofLupinus angustifolius. The effect of these cyclitols on the behaviour of the pea associated clone ofAcyrthosiphon pisumduring various stages of probing was studied. The main stage of probing studied was the stylet penetration in mesphyll and vascular bundle. D-pinitol, D-chiro-inositol and their mixture were exogenously applied to peaPisum sativumexplants and the aphid probing behaviour was evaluated using the Electrical Penetration Graph technique (EPG). Feeding of peas with cyclitols at a concentration of 10 mM, caused a selective accumulation of D-pinitol and D-chiro-inositol in stems, leaf petioles, and leaf blades. In aphid bodies, both cyclitols were traced, respectively, to the host plant treatment. The new cyclitols in pea tissues did not significantly affect the total duration and frequency of aphid activities during probing in peripheral as well as vascular tissues. However, the aphid behaviour on cyclitol-treated plants as compared to their behaviour on the control was slightly altered. Non-probing and probing in mesophyl prevailed among aphid activities during the initial period of stylet penetration. Aphids on D-pinitol+D-chiro-inositol-treated plants reached phloem vessels relatively later than aphids on the control and D-chiro-inositol plants. There were recurrent switches between E1 (salivation) and E2 (sap ingestion) patterns in some aphids during the phloem phase on D-pinitol and D-pinitol+D-chiro-inositol - treated plants. This may reflect difficulties in the uptake of the phloem sap, and point to lupin cyclitols as being responsible, at least in part, for the rejection ofL. angustifoliusas a host plant by the pea clone ofA. pisum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarzyna Stec ◽  
Bożena Kordan ◽  
Iwona Sergiel ◽  
Magdalena Biesaga ◽  
Joanna Mroczek ◽  
...  

AbstractTo reveal the antixenosis potential against the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) we analyzed the pea aphid survival and probing behavior, and the quantitative and qualitative variation of flavonoids in the leaves of selected soybean Glycine max (L.) Merr (Fabaceae) cultivars ‘Aldana’, ‘Annushka’, ‘Augusta’, ‘Madlen’, ‘Mavka’, ‘Simona’, ‘Violetta’, and ‘Viorica’. Aphid survival was drastically impeded on all cultivars. The electronic monitoring of aphid probing using the Electrical Penetration Graph (EPG) technique revealed that on all soybean cultivars, A. pisum readily probed into leaf tissues but the probes were usually terminated before reaching vascular tissues, which demonstrates the activity of antixenosis mechanisms in peripheral tissues epidermis and/or mesophyll in soybean leaves. The potency of antixenosis factors differed among soybean cultivars, which was reflected in differences in aphid survival and frequency and duration of phloem sap ingestion. Seven flavonoids were found: apigenin, daidzein, genistein, glycitein, isorhamnetin, kaempferol, and rutin, which occurred in different amount and proportion in individual cultivars. The content of apigenin and genistein in all soybean cultivars studied probably made them relatively unacceptable to A. pisum. Kaempferol in ‘Aldana’ might be responsible for the observed strong antixenosis resistance of this cultivar to A. pisum. The results of our survey provide the first detailed data that can be used for future studies.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2236 ◽  
Author(s):  
Barbara Agabiti ◽  
Roxanne J. Wassenaar ◽  
Linton Winder

Background.Many aphid species, including the pea aphidAcyrthosiphon pisum, exhibit a behaviour where they drop or fall from their host plant, a commonly used strategy to avoid predation, parasitism or physical disturbance. We hypothesised that there was a physiological non-consumptive cost due to such dropping behaviour because aphids would expend energy re-establishing themselves on a host plant and also lose feeding time.Methods.We evaluated this non-consumptive cost by determining the development time and reproductive potential of pea aphids that whilst developing as nymphs had regularly dropped to the ground following dislodgment from their host plant. Using a microcosm approach, in a replicated and balanced laboratory experiment, we caused aphid dropping behaviour by tapping the plants on which they were feeding.Results.The results demonstrated that disturbance by dropping behaviour increased nymphal development time and reduced their subsequent reproductive capacity as adults.Discussion.We conclude that dropping behaviour had a strong negative effect on the development of nymphs and their subsequent reproductive capacity. This implies that the physiological cost of such a behaviour choice is substantial, and that such avoidance strategies require a trade-off which reduces the capacity of a population to increase.


Sign in / Sign up

Export Citation Format

Share Document