scholarly journals Minimally-invasive insertion strategy and in vivo evaluation of multi-shank flexible intracortical probes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kagithiri Srikantharajah ◽  
Renata Medinaceli Quintela ◽  
Kerstin Doerenkamp ◽  
Björn M. Kampa ◽  
Simon Musall ◽  
...  

AbstractChronically implanted neural probes are powerful tools to decode brain activity however, recording population and spiking activity over long periods remains a major challenge. Here, we designed and fabricated flexible intracortical Michigan-style arrays with a shank cross-section per electrode of 250 μm$$^2$$ 2 utilizing the polymer paryleneC with the goal to improve the immune acceptance. As flexible neural probes are unable to penetrate the brain due to the low buckling force threshold, a tissue-friendly insertion system was developed by reducing the effective shank length. The insertion strategy enabled the implantation of the four, bare, flexible shanks up to 2 mm into the mouse brain without increasing the implantation footprint and therefore, minimizing the acute trauma. In acute recordings from the mouse somatosensory cortex and the olfactory bulb, we demonstrated that the flexible probes were able to simultaneously detect local field potentials as well as single and multi-unit activity. Additionally, the flexible arrays outperformed stiff probes with respect to yield of single unit activity. Following the successful in vivo validation, we further improved the microfabrication towards a double-metal-layer process, and were able to double the number of electrodes per shank by keeping the shank width resulting in a cross-section per electrode of 118 μm$$^2$$ 2 .

Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


Author(s):  
Thu Hang Lai ◽  
Magali Toussaint ◽  
Rodrigo Teodoro ◽  
Sladjana Dukić-Stefanović ◽  
Daniel Gündel ◽  
...  

Abstract Purpose The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. Methods [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. Results [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72–180 GBq/μmol. Autoradiography proved A2A receptor–specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 μg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. Conclusions The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


2018 ◽  
Author(s):  
Dayo O. Adewole ◽  
Laura A. Struzyna ◽  
James P. Harris ◽  
Ashley D. Nemes ◽  
Justin C. Burrell ◽  
...  

AbstractAchievements in intracortical neural interfaces are compromised by limitations in specificity and long-term performance. A biological intermediary between devices and the brain may offer improved specificity and longevity through natural synaptic integration with deep neural circuitry, while being accessible on the brain surface for optical read-out/control. Accordingly, we have developed the first “living electrodes” comprised of implantable axonal tracts protected within soft hydrogel cylinders for the biologically-mediated monitoring/modulation of brain activity. Here we demonstrate the controlled fabrication, rapid axonal outgrowth, reproducible cytoarchitecture, and simultaneous optical stimulation and recording of neuronal activity within these engineered constructs in vitro. We also present their transplantation, survival, integration, and optical recording in rat cortex in vivo as a proof-of-concept for this neural interface paradigm. The creation and functional validation of these preformed, axon-based “living electrodes” is a critical step towards developing a new class of biohybrid neural interfaces to probe and modulate native circuitry.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jay W. Reddy ◽  
Maya Lassiter ◽  
Maysamreza Chamanzar

Abstract Targeted light delivery into biological tissue is needed in applications such as optogenetic stimulation of the brain and in vivo functional or structural imaging of tissue. These applications require very compact, soft, and flexible implants that minimize damage to the tissue. Here, we demonstrate a novel implantable photonic platform based on a high-density, flexible array of ultracompact (30 μm × 5 μm), low-loss (3.2 dB/cm at λ = 680 nm, 4.1 dB/cm at λ = 633 nm, 4.9 dB/cm at λ = 532 nm, 6.1 dB/cm at λ = 450 nm) optical waveguides composed of biocompatible polymers Parylene C and polydimethylsiloxane (PDMS). This photonic platform features unique embedded input/output micromirrors that redirect light from the waveguides perpendicularly to the surface of the array for localized, patterned illumination in tissue. This architecture enables the design of a fully flexible, compact integrated photonic system for applications such as in vivo chronic optogenetic stimulation of brain activity.


1987 ◽  
Vol 114 (3) ◽  
pp. 449-458 ◽  
Author(s):  
R. J. Omeljaniuk ◽  
S. H. Shih ◽  
R. E. Peter

ABSTRACT Dopamine acts directly on the pituitary to modulate gonadotrophin (GtH) secretion in goldfish (Carassius auratus). In the light of this important role for dopamine in the regulation of goldfish reproduction, this investigation was designed to evaluate the receptor specificity of this dopamine inhibition and to describe the use of domperidone, a specific dopamine D2-receptor antagonist, in the manipulation of pituitary function in goldfish. To investigate the specificity of dopamine inhibition of GtH secretion, selected dopamine receptor antagonists were injected i.p. to block dopamine receptors thereby increasing GtH secretion as reflected by increased serum concentrations of GtH. Serum GtH levels were significantly increased by the active stereoisomer (−)-sulpiride in a dose-related fashion; (+)-sulpiride had no effect. Comparison of dopamine antagonists at low doses indicated that only domperidone and pimozide caused significant increases in serum concentrations of GtH. Dopamine antagonists potentiated the action of a gonadotrophin-releasing hormone analogue (GnRH-A) with an order of potency of domperidone = pimozide > metoclopramide = fluphenazine. [3H]Domperidone, injected i.p. with unlabelled domperidone, entered the blood and achieved maximum concentrations 12 h after injection, but did not accumulate in the brain in appreciable amounts. Gonadal 3H radioactivity was usually equal to or in excess of blood radioactivity, while [3H]domperidone was highly concentrated in the pituitary in a time-dependent fashion, with maximal accumulation occurring 24 h after injection. The time-course of pituitary accumulation of [3H]domperidone correlated well with the temporal increase in serum GtH levels in response to i.p. injected domperidone or domperidone plus an analogue of LHRH. Domperidone increased serum concentrations of GtH in a dose-related fashion; an analogue of salmon GnRH (sGnRH-A) increased the sensitivity and magnitude of the serum GtH response to domperidone. Serum concentrations of GtH were increased by sGnRH-A in a dose-related fashion; a low dose of domperidone substantially increased the sensitivity of the serum GtH response to sGnRH-A. These results indicate that dopamine inhibits GtH secretion from the goldfish pituitary by acting through a specific mechanism mediated by a dopamine D2 receptor. Domperidone increased serum concentrations of GtH, potentiated the action of gonadotrophin-releasing hormones and did not pass into the brain after i.p. injection into goldfish. The data also suggest that dopamine and GnRH, although acting through different receptors, influence the effect of each other on GtH release. J. Endocr. (1987) 114, 449–458


2011 ◽  
Author(s):  
George K. Lewis Jr. ◽  
Sabrina Guarino ◽  
Gaurav Gandhi ◽  
Laurent Filinger ◽  
George K. Lewis Sr. ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document