scholarly journals Identifying individuals with recent COVID-19 through voice classification using deep learning

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pichatorn Suppakitjanusant ◽  
Somnuek Sungkanuparph ◽  
Thananya Wongsinin ◽  
Sirapong Virapongsiri ◽  
Nittaya Kasemkosin ◽  
...  

AbstractRecently deep learning has attained a breakthrough in model accuracy for the classification of images due mainly to convolutional neural networks. In the present study, we attempted to investigate the presence of subclinical voice feature alteration in COVID-19 patients after the recent resolution of disease using deep learning. The study was a prospective study of 76 post COVID-19 patients and 40 healthy individuals. The diagnoses of post COVID-19 patients were based on more than the eighth week after onset of symptoms. Voice samples of an ‘ah’ sound, coughing sound and a polysyllabic sentence were collected and preprocessed to log-mel spectrogram. Transfer learning using the VGG19 pre-trained convolutional neural network was performed with all voice samples. The performance of the model using the polysyllabic sentence yielded the highest classification performance of all models. The coughing sound produced the lowest classification performance while the ability of the monosyllabic ‘ah’ sound to predict the recent COVID-19 fell between the other two vocalizations. The model using the polysyllabic sentence achieved 85% accuracy, 89% sensitivity, and 77% specificity. In conclusion, deep learning is able to detect the subtle change in voice features of COVID-19 patients after recent resolution of the disease.

Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2020 ◽  
Author(s):  
Fatimah Alshamari ◽  
Abdou Youssef

Document classification is a fundamental task for many applications, including document annotation, document understanding, and knowledge discovery. This is especially true in STEM fields where the growth rate of scientific publications is exponential, and where the need for document processing and understanding is essential to technological advancement. Classifying a new publication into a specific domain based on the content of the document is an expensive process in terms of cost and time. Therefore, there is a high demand for a reliable document classification system. In this paper, we focus on classification of mathematics documents, which consist of English text and mathematics formulas and symbols. The paper addresses two key questions. The first question is whether math-document classification performance is impacted by math expressions and symbols, either alone or in conjunction with the text contents of documents. Our investigations show that Text-Only embedding produces better classification results. The second question we address is the optimization of a deep learning (DL) model, the LSTM combined with one dimension CNN, for math document classification. We examine the model with several input representations, key design parameters and decision choices, and choices of the best input representation for math documents classification.


2021 ◽  
Vol 36 (1) ◽  
pp. 443-450
Author(s):  
Mounika Jammula

As of 2020, the total area planted with crops in India overtook 125.78 million hectares. India is the second biggest organic product maker in the world. Thus, an Indian economy greatly depends on farming products. Nowadays, farmers suffer a drop in production due to a lot of diseases and pests. Thus, to overcome this problem, this article presents the artificial intelligence based deep learning approach for plant disease classification. Initially, the adaptive mean bilateral filter (AMBF) for noise removal and enhancement operations. Then, Gaussian kernel fuzzy C-means (GKFCM) approach is used to segment the effected disease regions. The optimal features from color, texture and shape features are extracted by using GLCM. Finally, Deep learning convolutional neural network (DLCNN) is used for the classification of five class diseases. The segmentation and classification performance of proposed method outperforms as compared with the state of art approaches.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4373 ◽  
Author(s):  
Zabit Hameed ◽  
Sofia Zahia ◽  
Begonya Garcia-Zapirain ◽  
José Javier Aguirre ◽  
Ana María Vanegas

Breast cancer is one of the major public health issues and is considered a leading cause of cancer-related deaths among women worldwide. Its early diagnosis can effectively help in increasing the chances of survival rate. To this end, biopsy is usually followed as a gold standard approach in which tissues are collected for microscopic analysis. However, the histopathological analysis of breast cancer is non-trivial, labor-intensive, and may lead to a high degree of disagreement among pathologists. Therefore, an automatic diagnostic system could assist pathologists to improve the effectiveness of diagnostic processes. This paper presents an ensemble deep learning approach for the definite classification of non-carcinoma and carcinoma breast cancer histopathology images using our collected dataset. We trained four different models based on pre-trained VGG16 and VGG19 architectures. Initially, we followed 5-fold cross-validation operations on all the individual models, namely, fully-trained VGG16, fine-tuned VGG16, fully-trained VGG19, and fine-tuned VGG19 models. Then, we followed an ensemble strategy by taking the average of predicted probabilities and found that the ensemble of fine-tuned VGG16 and fine-tuned VGG19 performed competitive classification performance, especially on the carcinoma class. The ensemble of fine-tuned VGG16 and VGG19 models offered sensitivity of 97.73% for carcinoma class and overall accuracy of 95.29%. Also, it offered an F1 score of 95.29%. These experimental results demonstrated that our proposed deep learning approach is effective for the automatic classification of complex-natured histopathology images of breast cancer, more specifically for carcinoma images.


Author(s):  
P. V. S. M. S. Kartik ◽  
Konjeti B. V. N. S. Sumanth ◽  
V. N. V. Sri Ram ◽  
G. Jeyakumar

The encoding of a message is the creation of the message. The decoding of a message is how people can comprehend, and decipher the message. It is a procedure of understanding and interpretation of coded data into a comprehensible form. In this paper, a self-created explicitly defined function for encoding numerical digits into graphical representation is proposed. The proposed system integrates deep learning methods to get the probabilities of digit occurrence and Edge detection techniques for decoding the graphically encoded numerical digits to numerical digits as text. The proposed system’s major objective is to take in an Image with digits encoded in graphical format and give the decoded stream of digits corresponding to the graph. This system also employs relevant pre-processing techniques to convert RGB to text and image to Canny image. Techniques such as Multi-Label Classification of images and Segmentation are used for getting the probability of occurrence. The dataset is created, on our own, that consists of 1000 images. The dataset has the training data and testing data in the proportion of 9 : 1. The proposed system was trained on 900 images and the testing was performed on 100 images which were ordered in 10 classes. The model has created a precision of 89% for probability prediction.


2017 ◽  
Author(s):  
Jie Xie

Acoustic classification of frogs has received increasing attention for its promising application in ecological studies. Various studies have been proposed for classifying frog species, but most recordings are assumed to have only a single species. In this study, a method to classify multiple frog species in an audio clip is presented. To be specific, continuous frog recordings are first cropped into audio clips (10 seconds). Then, various time-frequency representations are generated for each 10-s recording. Next, instead of using traditional hand-crafted features, a deep learning algorithm is used to find the most important feature. Finally, a binary relevance based multi-label classification approach is proposed to classify simultaneously vocalizing frog species with our proposed features. Experimental results show that our proposed features extracted using deep learning can achieve better classification performance when compared to hand-crafted features for frog call classification.


2017 ◽  
Author(s):  
Jie Xie

Acoustic classification of frogs has received increasing attention for its promising application in ecological studies. Various studies have been proposed for classifying frog species, but most recordings are assumed to have only a single species. In this study, a method to classify multiple frog species in an audio clip is presented. To be specific, continuous frog recordings are first cropped into audio clips (10 seconds). Then, various time-frequency representations are generated for each 10-s recording. Next, instead of using traditional hand-crafted features, a deep learning algorithm is used to find the most important feature. Finally, a binary relevance based multi-label classification approach is proposed to classify simultaneously vocalizing frog species with our proposed features. Experimental results show that our proposed features extracted using deep learning can achieve better classification performance when compared to hand-crafted features for frog call classification.


Author(s):  
Vinit Kumar Gunjan ◽  
Rashmi Pathak ◽  
Omveer Singh

This article describes how to establish the neural network technique for various image groupings in a convolution neural network (CNN) training. In addition, it also suggests initial classification results using CNN learning characteristics and classification of images from different categories. To determine the correct architecture, we explore a transfer learning technique, called Fine-Tuning of Deep Learning Technology, a dataset used to provide solutions for individually classified image-classes.


Sign in / Sign up

Export Citation Format

Share Document