scholarly journals A proof of concept for machine learning-based virtual knapping using neural networks

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jordy Didier Orellana Figueroa ◽  
Jonathan Scott Reeves ◽  
Shannon P. McPherron ◽  
Claudio Tennie

AbstractPrehistoric stone tools are an important source of evidence for the study of human behavioural and cognitive evolution. Archaeologists use insights from the experimental replication of lithics to understand phenomena such as the behaviours and cognitive capacities required to manufacture them. However, such experiments can require large amounts of time and raw materials, and achieving sufficient control of key variables can be difficult. A computer program able to accurately simulate stone tool production would make lithic experimentation faster, more accessible, reproducible, less biased, and may lead to reliable insights into the factors that structure the archaeological record. We present here a proof of concept for a machine learning-based virtual knapping framework capable of quickly and accurately predicting flake removals from 3D cores using a conditional adversarial neural network (CGAN). We programmatically generated a testing dataset of standardised 3D cores with flakes knapped from them. After training, the CGAN accurately predicted the length, volume, width, and shape of these flake removals using the intact core surface information alone. This demonstrates the feasibility of machine learning for investigating lithic production virtually. With a larger training sample and validation against archaeological data, virtual knapping could enable fast, cheap, and highly-reproducible virtual lithic experimentation.

2021 ◽  
Author(s):  
Jordy Didier Orellana Figueroa ◽  
Jonathan Scott Reeves ◽  
Shannon P. McPherron ◽  
Claudio Tennie

Prehistoric stone tools are an important source of evidence for the study of human behavioural and cognitive evolution. Archaeologists use insights from the experimental replication of stone tools to understand things such as the behaviours and cognitive capacities required to manufacture them. However, such experiments can require large amounts of time and raw materials, and achieving sufficient control of key knapping variables can be difficult. A computer program able to accurately simulate stone tool production would make lithic experimentation faster and more accessible, and may lead to reliable insights into the factors that structure the archaeological record. We present here a proof of concept for a machine learning-based virtual knapping framework capable of quickly and accurately predicting flake removals from 3D cores using a conditional adversarial neural network (CGAN). We programmatically generated a testing dataset of standardised 3D cores with flakes knapped from them. After training, the CGAN accurately predicted the length, volume, width, and shape of these flake removals using the core surface information alone. This demonstrates the feasibility of machine learning for investigating stone tool production virtually. With an increased training sample and validation against archaeological data, virtual knapping could enable fast, cheap, and highly-repeatable virtual lithic experimentation.


Author(s):  
Kui Fang ◽  
Zheqing Dong ◽  
Xiling Chen ◽  
Ji Zhu ◽  
Bing Zhang ◽  
...  

Abstract Objectives A sample with a blood clot may produce an inaccurate outcome in coagulation testing, which may mislead clinicians into making improper clinical decisions. Currently, there is no efficient method to automatically detect clots. This study demonstrates the feasibility of utilizing machine learning (ML) to identify clotted specimens. Methods The results of coagulation testing with 192 clotted samples and 2,889 no-clot-detected (NCD) samples were retrospectively retrieved from a laboratory information system to form the training dataset and testing dataset. Standard and momentum backpropagation neural networks (BPNNs) were trained and validated using the training dataset with a five-fold cross-validation method. The predictive performances of the models were then assessed based on the testing dataset. Results Our results demonstrated that there were intrinsic distinctions between the clotted and NCD specimens regarding differences in the testing results and the separation of the groups (clotted and NCD) in the t-SNE analysis. The standard and momentum BPNNs could identify the sample status (clotted and NCD) with areas under the ROC curves of 0.966 (95% CI, 0.958–0.974) and 0.971 (95% CI, 0.9641–0.9784), respectively. Conclusions Here, we have described the application of ML algorithms in identifying the sample status based on the results of coagulation testing. This approach provides a proof-of-concept application of ML algorithms to evaluate the sample quality, and it has the potential to facilitate clinical laboratory automation.


Author(s):  
Stephanie Owen ◽  
Samuel Cureton ◽  
Mathew Szuhan ◽  
Joel McCarten ◽  
Panagiota Arvanitis ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 816
Author(s):  
Mohammad Jooshaki ◽  
Alona Nad ◽  
Simon Michaux

Machine learning is a subcategory of artificial intelligence, which aims to make computers capable of solving complex problems without being explicitly programmed. Availability of large datasets, development of effective algorithms, and access to the powerful computers have resulted in the unprecedented success of machine learning in recent years. This powerful tool has been employed in a plethora of science and engineering domains including mining and minerals industry. Considering the ever-increasing global demand for raw materials, complexities of the geological structure of ore deposits, and decreasing ore grade, high-quality and extensive mineralogical information is required. Comprehensive analyses of such invaluable information call for advanced and powerful techniques including machine learning. This paper presents a systematic review of the efforts that have been dedicated to the development of machine learning-based solutions for better utilizing mineralogical data in mining and mineral studies. To that end, we investigate the main reasons behind the superiority of machine learning in the relevant literature, machine learning algorithms that have been deployed, input data, concerned outputs, as well as the general trends in the subject area.


Author(s):  
Y. Xu ◽  
X. Hu ◽  
Y. Wei ◽  
Y. Yang ◽  
D. Wang

<p><strong>Abstract.</strong> The demand for timely information about earth’s surface such as land cover and land use (LC/LU), is consistently increasing. Machine learning method shows its advantage on collecting such information from remotely sensed images while requiring sufficient training sample. For satellite remote sensing image, however, sample datasets covering large scope are still limited. Most existing sample datasets for satellite remote sensing image built based on a few frames of image located on a local area. For large scope (national level) view, choosing a sufficient unbiased sampling method is crucial for constructing balanced training sample dataset. Dependable spatial sample locations considering spatial heterogeneity of land cover are needed for choosing sample images. This paper introduces an ongoing work on establishing a national scope sample dataset for high spatial-resolution satellite remote sensing image processing. Sample sites been chosen sufficiently using spatial sampling method, and divided sample patches been grouped using clustering method for further uses. The neural network model for road detection trained our dataset subset shows an increased performance on both completeness and accuracy, comparing to two widely used public dataset.</p>


2019 ◽  
Author(s):  
Jennie E. Brand ◽  
Jiahui Xu ◽  
Bernard Koch ◽  
pablo geraldo

Individuals do not respond uniformly to treatments, events, or interventions. Sociologists routinely partition samples into subgroups to explore how the effects of treatments vary by covariates like race, gender, and socioeconomic status. In so doing, analysts determine the key subpopulations based on theoretical priors. Data-driven discoveries are also routine, yet the analyses by which sociologists typically go about them are problematic and seldom move us beyond our expectations, and biases, to explore new meaningful subgroups. Emerging machine learning methods allow researchers to explore sources of variation that they may not have previously considered, or envisaged. In this paper, we use causal trees to recursively partition the sample and uncover sources of treatment effect heterogeneity. We use honest estimation, splitting the sample into a training sample to grow the tree and an estimation sample to estimate leaf-specific effects. Assessing a central topic in the social inequality literature, college effects on wages, we compare what we learn from conventional approaches for exploring variation in effects to causal trees. Given our use of observational data, we use leaf-specific matching and sensitivity analyses to address confounding and offer interpretations of effects based on observed and unobserved heterogeneity. We encourage researchers to follow similar practices in their work on variation in sociological effects.


Author(s):  
Lina Montuori ◽  
Manuel Alcázar-Ortega ◽  
Paula Bastida-Molina ◽  
Carlos Vargas-Salgado

In the so-called society 4.0, Artificial Intelligence (AI) is being widely used in many areas of life. Machine learning uses mathematical algorithms based on "training data", which are able to make predictions or take decisions with the ability to change their behavior through a self-training approach. Furthermore, thanks to AI, a large volume of data can be now processed with the overall goal to extract patterns and transform the information into a comprehensible structure for further utilization, which manually done by humans would easily take several years. In this framework, this article explores the potential of AI and machine learning to empower flipped classroom with just-in-time teaching (JiTT). JiTT is a pedagogical method that can be easily combined with the reverse teaching. It allows professors to receive feedback from students before class, so they may be able to adapt the lesson flow, as well as preparing strategies and activities focused on the student deficiencies. This research explores the application of AI in high education as a tool to analyze the key variables involved in the learning process of students and to integrate JiTT within the flipped classroom. Finally, a case of application of this methodology is presented, applied to the course of Industrial Refrigeration taught at the Polytechnic University of Valencia.


Sign in / Sign up

Export Citation Format

Share Document