scholarly journals Redox status of cysteines does not alter functional properties of human dUTPase but the Y54C mutation involved in monogenic diabetes decreases protein stability

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Judit Eszter Szabó ◽  
Kinga Nyíri ◽  
Dániel Andrási ◽  
Judit Matejka ◽  
Olivér Ozahonics ◽  
...  

AbstractRecently it was proposed that the redox status of cysteines acts as a redox switch to regulate both the oligomeric status and the activity of human dUTPase. In a separate report, a human dUTPase point mutation, resulting in a tyrosine to cysteine substitution (Y54C) was identified as the monogenic cause of a rare syndrome associated with diabetes and bone marrow failure. These issues prompt a critical investigation about the potential regulatory role of cysteines in the enzyme. Here we show on the one hand that independently of the redox status of wild-type cysteines, human dUTPase retains its characteristic trimeric assembly and its catalytic activity. On the other hand, the Y54C mutation did not compromise the substrate binding and the catalytic properties of the enzyme at room temperature. The thermal stability of the mutant protein was found to be decreased, which resulted in the loss of 67% of its activity after 90 min incubation at the physiological temperature in contrast to the wild-type enzyme. In addition, the presence or absence of reducing agents had no effect on hDUTY54C activity and stability, although it was confirmed that the introduced cysteine contains a solvent accessible thiol group.

2001 ◽  
Vol 29 (2) ◽  
pp. 99-105 ◽  
Author(s):  
G. Regelsberger ◽  
C. Jakopitsch ◽  
P. G. Furtmüller ◽  
F. Rueker ◽  
J. Switala ◽  
...  

Catalase-peroxidases are bifunctional peroxidases exhibiting an overwhelming catalase activity and a substantial peroxidase activity. Here we present a kinetic study of the formation and reduction of the key intermediate compound I by probing the role of the conserved tryptophan at the distal haem cavity site. Two wild-type proteins and three mutants of Synechocystis catalase-peroxidase (W122A and W122F) and Escherichia coli catalase-peroxidase (W105F) have been investigated by steady-state and stopped-flow spectroscopy. W122F and W122A completely lost their catalase activity whereas in W105F the catalase activity was reduced by a factor of about 5000. However, the mutations did not influence both formation of compound I and its reduction by peroxidase substrates. It was demonstrated unequivocally that the rate of compound I reduction by pyrogallol or o-dianisidine sometimes even exceeded that of the wild-type enzyme. This study demonstrates that the indole ring of distal Trp in catalase-peroxidases is essential for the two-electron reduction of compound I by hydrogen peroxide but not for compound I formation or for peroxidase reactivity (i.e. the one-electron reduction of compound I).


2007 ◽  
Vol 70 (9) ◽  
pp. 2168-2171
Author(s):  
JONG-KYUNG LEE ◽  
SARA MOVAHEDI ◽  
STEPHEN E. HARDING ◽  
BERNARD M. MACKEY ◽  
WILLIAM M. WAITES

To find the range of pressure required for effective high-pressure inactivation of bacterial spores and to investigate the role of α/β-type small, acid-soluble proteins (SASP) in spores under pressure treatment, mild heat was combined with pressure (room temperature to 65°C and 100 to 500 MPa) and applied to wild-type and SASP-α−/β− Bacillus subtilis spores. On the one hand, more than 4 log units of wild-type spores were reduced after pressurization at 100 to 500 MPa and 65°C. On the other hand, the number of surviving mutant spores decreased by 2 log units at 100 MPa and by more than 5 log units at 500 MPa. At 500 MPa and 65°C, both wild-type and mutant spore survivor counts were reduced by 5 log units. Interestingly, pressures of 100, 200, and 300 MPa at 65°C inactivated wild-type SASP-α+/β+ spores more than mutant SASP-α−/β− spores, and this was attributed to less pressure-induced germination in SASP-α−/β− spores than in wild-type SASP-α+/β+ spores. However, there was no difference in the pressure resistance between SASP-α+/β+ and SASP-α−/β− spores at 100 MPa and ambient temperature (approximately 22°C) for 30 min. A combination of high pressure and high temperature is very effective for inducing spore germination, and then inactivation of the germinated spore occurs because of the heat treatment. This study showed that α/β-type SASP play a role in spore inactivation by increasing spore germination under 100 to 300 MPa at high temperature.


Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3796-3806 ◽  
Author(s):  
Gaëtan Prevost ◽  
Arnaud Arabo ◽  
Long Jian ◽  
Eddy Quelennec ◽  
Dorthe Cartier ◽  
...  

Selenoproteins are involved in the regulation of redox status, which affects several cellular processes, including cell survival and homeostasis. Considerable interest has arisen recently concerning the role of selenoproteins in the regulation of glucose metabolism. Here, we found that selenoprotein T (SelT), a new thioredoxin-like protein of the endoplasmic reticulum, is present at high levels in human and mouse pancreas as revealed by immunofluorescence and quantitative PCR. Confocal immunohistochemistry studies revealed that SelT is mostly confined to insulin- and somatostatin-producing cells in mouse and human islets. To elucidate the role of SelT in β-cells, we generated, using a Cre-Lox strategy, a conditional pancreatic β-cell SelT-knockout C57BL/6J mice (SelT-insKO) in which SelT gene disruption is under the control of the rat insulin promoter Cre gene. Glucose administration revealed that male SelT-insKO mice display impaired glucose tolerance. Although insulin sensitivity was not modified in the mutant mice, the ratio of glucose to insulin was significantly higher in the SelT-insKO mice compared with wild-type littermates, pointing to a deficit in insulin production/secretion in mutant mice. In addition, morphometric analysis showed that islets from SelT-insKO mice were smaller and that their number was significantly increased compared with islets from their wild-type littermates. Finally, we found that SelT is up-regulated by pituitary adenylate cyclase-activating polypeptide (PACAP) in β-pancreatic cells and that SelT could act by facilitating a feed-forward mechanism to potentiate insulin secretion induced by the neuropeptide. Our findings are the first to show that the PACAP-regulated SelT is localized in pancreatic β- and δ-cells and is involved in the control of glucose homeostasis.


1987 ◽  
Author(s):  
G A Vehar ◽  
K M Tate ◽  
D L Higgins ◽  
W E Holmes ◽  
H L Heyneker

The significance of the cleavage at arginine-275 of human t-PA has been the subject of debate. It has been reported, as expected for a member of the serine protease family, that the single chain form is a zymogen and that generation of catalytic activity is dependent upon cleavage at arginine-275. Other groups, in contrast, have found considerable enzyme activity associated with the one-chain form of t-PA. To clarify the functional significance of this proteolysis and circumvent cleavage of one-chain t-PA by itself or plasmin, site-directed mutagenesis was employed to change the codon of arginine-275 to specify a glutamic acid. The resulting plasmid was used to transfect CHO cells. The single chain mutant [Glu-275 t-PA] was expressed in CHO cells and the protein purified by conventional techniques. The mutant enzyme could be converted to the two-chain form by V8 protease, but not by plasmin. Glu-275 t-PA was 8 times less active in the cleavage of a tripeptide substrate and 20-50 times less active in the activation of plasminogen in the absence of firbrin(ogen) than its two-chain form. In the presence of fibrin(ogen), in contrast, the one and two-chain forms of Glu-275 t-PA were equal in their ability to activate plasminogen in the presence of fibrin(ogen). The activity in these assays was equal to the activity of wild type t-PA. In addition, it was observed that fibrin bound considerably more of the one-chain form of t-PA than the two chain forms of t-PA and the Glu-275 mutant. The one and two-chain forms of the wild type and mutated t-PA were found to slowly form complexes with plasma protease inhibitors in vitro, although the one-chain forms were less reactive with alpha-2-macroglobulin. It can be concluded that the one-chain form of t-PA appears to be fully functional under physiologic conditions and has an increased affinity for fibrin compared to two-chain t-PA.


1997 ◽  
Vol 327 (3) ◽  
pp. 877-882 ◽  
Author(s):  
Junutula Reddy JAGATH ◽  
Naropantul APPAJI RAO ◽  
Handanahal SubbaRao SAVITHRI

In an attempt to identify the arginine residue involved in binding of the carboxylate group of serine to mammalian serine hydroxymethyltransferase, a highly conserved Arg-401 was mutated to Ala by site-directed mutagenesis. The mutant enzyme had a characteristic visible absorbance at 425 nm indicative of the presence of bound pyridoxal 5ʹ-phosphate as an internal aldimine with a lysine residue. However, it had only 0.003% of the catalytic activity of the wild-type enzyme. It was also unable to perform reactions with glycine, β-phenylserine or D-alanine, suggesting that the binding of these substrates to the mutant enzyme was affected. This was also evident from the interaction of amino-oxyacetic acid, which was very slow (8.4×10-4 s-1 at 50 μM) for the R401A mutant enzyme compared with the wild-type enzyme (44.6 s-1 at 50 μM). In contrast, methoxyamine (which lacks the carboxy group) reacted with the mutant enzyme (1.72 s-1 at 250 μM) more rapidly than the wild-type enzyme (0.2 s-1 at 250 μM). Further, both wild-type and the mutant enzymes were capable of forming unique quinonoid intermediates absorbing at 440 and 464 nm on interaction with thiosemicarbazide, which also does not have a carboxy group. These results implicate Arg-401 in the binding of the substrate carboxy group. In addition, gel-filtration profiles of the apoenzyme and the reconstituted holoenzyme of R401A and the wild-type enzyme showed that the mutant enzyme remained in a tetrameric form even when the cofactor had been removed. However, the wild-type enzyme underwent partial dissociation to a dimer, suggesting that the oligomeric structure was rendered more stable by the mutation of Arg-401. The increased stability of the mutant enzyme was also reflected in the higher apparent melting temperature (Tm) (61 °C) than that of the wild-type enzyme (56 °C). The addition of serine or serinamide did not change the apparent Tm of R401A mutant enzyme. These results suggest that the mutant enzyme might be in a permanently ‘open’ form and the increased apparent Tm could be due to enhanced subunit interactions.


1999 ◽  
Vol 343 (3) ◽  
pp. 525-531 ◽  
Author(s):  
Claire S. ALLARDYCE ◽  
Paul D. MCDONAGH ◽  
Lu-Yun LIAN ◽  
C. Roland WOLF ◽  
Gordon C. K. ROBERTS

Glutathione S-transferases (GSTs) play a key role in the metabolism of drugs and xenobiotics. To investigate the catalytic mechanism, substrate binding and catalysis by the wild-type and two mutants of GST A1-1 have been studied. Substitution of the ‘essential’ Tyr9 by phenylalanine leads to a marked decrease in the kcat for 1-chloro-2,4-dinitrobenzene (CDNB), but has no affect on kcat for ethacrynic acid. Similarly, removal of the C-terminal helix by truncation of the enzyme at residue 209 leads to a decrease in kcat for CDNB, but an increase in kcat for ethacrynic acid. The binding of a GSH analogue increases the affinity of the wild-type enzyme for CDNB, and increases the rate of the enzyme-catalysed conjugation of this substrate with the small thiols 2-mercaptoethanol and dithiothreitol. This suggests that GSH binding produces a conformational change which is transmitted to the binding site for the hydrophobic substrate, where it alters both the affinity for the substrate and the catalytic-centre activity (‘turnover number‘) for conjugation, perhaps by increasing the proportion of the substrate bound productively. Neither of these two effects of GSH analogues are seen in the C-terminally truncated enzyme, indicating a role for the C-terminal helix in the GSH-induced conformational change.


2019 ◽  
Vol 116 (37) ◽  
pp. 18723-18731 ◽  
Author(s):  
Sang Yeol Kim ◽  
Christopher M. Harvey ◽  
Jonas Giese ◽  
Ines Lassowskat ◽  
Vijayata Singh ◽  
...  

ArabidopsisRubisco activase (Rca) is phosphorylated at threonine-78 (Thr78) in low light and in the dark, suggesting a potential regulatory role in photosynthesis, but this has not been directly tested. To do so, we transformed anrca-knockdown mutant largely lacking redox regulation with wild-type Rca-β or Rca-β with Thr78-to-Ala (T78A) or Thr78-to-Ser (T78S) site–directed mutations. Interestingly, the T78S mutant was hyperphosphorylated at the Ser78 site relative to Thr78 of the Rca-β wild-type control, as evidenced by immunoblotting with custom antibodies and quantitative mass spectrometry. Moreover, plants expressing the T78S mutation had reduced photosynthesis and quantum efficiency of photosystem II (ϕPSII) and reduced growth relative to control plants expressing wild-type Rca-β under all conditions tested. Gene expression was also altered in a manner consistent with reduced growth. In contrast, plants expressing Rca-β with the phospho-null T78A mutation had faster photosynthetic induction kinetics and increased ϕPSIIrelative to Rca-β controls. While expression of the wild-type Rca-β or the T78A mutant fully rescued the slow-growth phenotype of therca-knockdown mutant grown in a square-wave light regime, the T78A mutants grew faster than the Rca-β control plants at low light (30 µmol photons m−2s−1) and in a fluctuating low-light/high-light environment. Collectively, these results suggest that phosphorylation of Thr78 (or Ser78 in the T78S mutant) plays a negative regulatory role in vivo and provides an explanation for the absence of Ser at position 78 in terrestrial plant species.


2010 ◽  
Vol 76 (23) ◽  
pp. 7723-7733 ◽  
Author(s):  
Fernando L�pez-Gallego ◽  
GraysonT. Wawrzyn ◽  
Claudia Schmidt-Dannert

ABSTRACT Sesquiterpene synthases are responsible for the cyclization of farnesyl pyrophosphate into a myriad of structurally diverse compounds with various biological activities. We examine here the role of the conserved active site H-α1 loop in catalysis in three previously characterized fungal sesquiterpene synthases. The H-α1 loops of Cop3, Cop4, and Cop6 from Coprinus cinereus were altered by site-directed mutagenesis and the resultant product profiles were analyzed by gas chromatography-mass spectrometry and compared to the wild-type enzymes. In addition, we examine the effect of swapping the H-α1 loop from the promiscuous enzyme Cop4 with the more selective Cop6 and the effect of acidic or basic conditions on loop mutations in Cop4. Directed mutations of the H-α1 loop had a marked effect on the product profile of Cop3 and Cop4, while little to no change was shown in Cop6. Swapping of the Cop4 and Cop6 loops with one another was again shown to influence the product profile of Cop4, while the product profile of Cop6 remained identical to the wild-type enzyme. The loop mutations in Cop4 also implicate specific residues responsible for the pH sensitivity of the enzyme. These results affirm the role of the H-α1 loop in catalysis and provide a potential target to increase the product diversity of terpene synthases.


2018 ◽  
Author(s):  
Stuti Sharma ◽  
Rebecca A. Oot ◽  
Stephan Wilkens

AbstractThe vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel sectors, a process that is poorly understood on the molecular level. V-ATPase is a rotary motor and recent structural analysis revealed that disassembled V1 and Vo are in different rotary states, a mismatch that is likely responsible for the inability to reconstitute holo V-ATPase from its functional sectors in vitro. Here, using the model organism S. cerevisiae, we show that a key impediment for binding of autoinhibited V1 to Vo is the conformation of the inhibitory C-terminus of subunit H (HCT). Using biolayer interferometry and biochemical analysis, we show that selective disruption of HCT’s binding site on V1 allows in vitro assembly of a structurally and functionally coupled V-ATPase complex. The resultant mutant V-ATPase, however, does not disassemble as readily as the wild type enzyme, highlighting the importance of HCT’s conformation in the mechanism of reversible disassembly. These findings pave the way for identifying molecules that allow for therapeutic modulation of aberrant V-ATPase activity in the disease state.


Sign in / Sign up

Export Citation Format

Share Document