scholarly journals Finite element simulations of hybrid nano-Carreau Yasuda fluid with hall and ion slip forces over rotating heated porous cone

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Umar Nazir ◽  
Muhammad Sohail ◽  
Mahmoud M. Selim ◽  
Hussam Alrabaiah ◽  
Poom Kumam

AbstractInvolvement of hybrid nanoparticles a vital role to improve the efficiency of thermal systems. This report covers the utilization of different nanoparticles mixed in Carreau Yasuda material for the improvement of thermal performance. The configuration of flow situation is considered over a rotating porous cone by considering the Hall and Ion slip forces. Transport of momentum is considered to be in a rotating cone under generalized ohm’s law and heat transfer is presented by considering viscous dissipation, Joule heating and heat generation. Rheology of considered model is derived by engaging the theory proposed by Prandtl. Modeled complex PDEs are reduced into ODEs under similarity transformation. To study the physics behind this phenomenon, solution is essential. Here, FEM (Finite Element Method) is adopted to compute the solution. Furthermore, the grid independent study is reported with several graphs and tables which are prepared to note the influence of involved parameters on thermal and velocity fields. It is worth mentioning that heat transport is controlled via higher radiation parameter and it upsurges for Eckert number. Moreover, Hall and ion slip parameters are considered significant parameters to produce the enhancement in motion of fluid particles but speed of nano and hybrid nanoparticles becomes slow down versus large values of Forchheimer and Weissenberg numbers. Additionally, an enhancement in production of heat energy is addressed via large values of heat generation number and Eckert number while reduction in heat energy is occurred due to positive values of thermal radiation and Hall and ion slip parameters.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256302
Author(s):  
Umar Nazir ◽  
Muhammad Sohail ◽  
Hussam Alrabaiah ◽  
Mahmoud M. Selim ◽  
Phatiphat Thounthong ◽  
...  

This report is prepared to examine the heat transport in stagnation point mixed convective hyperbolic tangent material flow past over a linear heated stretching sheet in the presence of magnetic dipole. Phenomenon of thermal transmission plays a vital role in several industrial manufacturing processes. Heat generation is along with thermal relaxation due to Cattaneo-Christov flux is engaged while modeling the energy equation. In order to improve the thermal performance, inclusion of hybrid nanoparticles is mixed in hyperbolic tangent liquid. The conservation laws are modeled in Cartesian coordinate system and simplified via boundary layer approximation. The modeled partial differential equations (PDEs) system are converted into ordinary differential equations (ODEs) system by engaging the scaling group transformation. The converted system of modeled equations has been tackled via finite element procedure (FEP). The efficiency of used scheme has been presented by establishing the grid independent survey. Moreover, accurateness of results is shown with the help of comparative study. It is worth mentioning that the inclusion of hybrid nanoparticles has significant higher impact on heat conduction as compared with nanoparticle. Moreover, hybrid nanoparticles are more efficient to conduct maximum production of heat energy as compared with the production of heat energy of nanoparticles. Hence, hybrid nanoparticles (MoS2/Ag) are observed more significant to conduct more heat energy rather than nanoparticle (Ag).


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8115
Author(s):  
Ebrahem A. Algehyne ◽  
Essam R. El-Zahar ◽  
Muhammad Sohail ◽  
Umar Nazir ◽  
Hussein A. Z. AL-bonsrulah ◽  
...  

The numerical, analytical, theoretical and experimental study of thermal transport is an active field of research due to its enormous applications and use in numerous systems. This report covers the impacts of thermal transport on pseudo-plastic material past over a horizontal, heated and stretched porous sheet. Modeling of energy conservation is based upon a generalized heat flux model along with a heat generation/absorption factor. The modeled phenomenon is derived in the Cartesian coordinate system under the usual boundary-layer approach proposed by Prandtl, which removes the complexity of the problem. The modeled rheology is obtained in the form of coupled, nonlinear PDEs. These derived PDEs are converted into ODEs with the engagement of similarity transformation. Afterwards, converted ODEs containing some emerging parameters have been approximated numerically with a powerful and effective scheme, namely the finite element approach. The obtained results are compared with the published findings as a limiting case of current research, and an excellent agreement in the obtained solution was found, which guarantees the effectiveness of the used methodology. Furthermore, it is recommended that the finite element approach is a good method among other existing methods and can be effectively applied to nonlinear problems arising in the mathematical modeling of different phenomenon.


Author(s):  
Oscar O. Rodriguez ◽  
Arturo A. Fuentes ◽  
Constantine Tarawneh ◽  
Robert E. Jones

Thermoplastic elastomers (TPE’s) are increasingly being used in rail service in load damping applications. They are superior to traditional elastomers primarily in their ease of fabrication. Like traditional elastomers they offer benefits including reduction in noise emissions and improved wear resistance in metal components that are in contact with such parts in the railcar suspension system. However, viscoelastic materials, such as the railroad bearing thermoplastic elastomer suspension element (or elastomeric pad), are known to develop self-heating (hysteresis) under cyclic loading, which can lead to undesirable consequences. Quantifying the hysteresis heating of the pad during operation is therefore essential to predict its dynamic response and structural integrity, as well as, to predict and understand the heat transfer paths from bearings into the truck assembly and other contacting components. This study investigates the internal heat generation in the suspension pad and its impact on the complete bearing assembly dynamics and thermal profile. Specifically, this paper presents an experimentally validated finite element thermal model of the elastomeric pad and its internal heat generation. The steady-state and transient-state temperature profiles produced by hysteresis heating of the elastomer pad are developed through a series of experiments and finite element analysis. The hysteresis heating is induced by the internal heat generation, which is a function of the loss modulus, strain, and frequency. Based on previous experimental studies, estimations of internally generated heat were obtained. The calculations show that the internal heat generation is impacted by temperature and frequency. At higher frequencies, the internally generated heat is significantly greater compared to lower frequencies, and at higher temperatures, the internally generated heat is significantly less compared to lower temperatures. However, during service operation, exposure of the suspension pad to higher loading frequencies above 10 Hz is less likely to occur. Therefore, internal heat generation values that have a significant impact on the suspension pad steady-state temperature are less likely to be reached. The commercial software package ALGOR 20.3TM is used to conduct the thermal finite element analysis. Different internal heating scenarios are simulated with the purpose of obtaining the bearing suspension element temperature distribution during normal and abnormal conditions. The results presented in this paper can be used in the future to acquire temperature distribution maps of complete bearing assemblies in service conditions and enable a refined model for the evolution of bearing temperature during operation.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 85
Author(s):  
Arun Seeralan Balakrishnan ◽  
Farrukh Nagi ◽  
Khairul Salleh ◽  
Prem A/L Gunnasegaran

This research investigates how the heat from car exhaust pipe line can be recovered as power using passive Thermo electric generator (TEG) using heat pipes. In this research the heat pipes are place on the cold side of TEG to remove the rising temperature and hot side of TEG is placed on the circumference of exhaust pipe line of car engine. The heat pipes with and without nano-fluids were placed on cold side of TEGs to investigate heat removal from increasing temperature and too maintain constant temperature on cold side. On the basis of results from 3D finite element simulations and experiments in the setup, the heat flow, voltage, and current were measured. The method presented in this paper gives detailed insight into how TEG modules perform in general, and also enables prediction of potential improvement in module performance by using different nano-fluids as coolants and Preliminary results were obtained. The results of Finite Element Analysis are analogous with the experimental results of TEG with water filled heat pipes with minimal possible errors. Therefore, the performance of nano-fluids in heat pipes are numerically evaluated and proposal are made for the enhancement of Module power outputs in Harnessing exhaust heat energy.


Sign in / Sign up

Export Citation Format

Share Document