scholarly journals Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future flash droughts in India

Author(s):  
Vimal Mishra ◽  
Saran Aadhar ◽  
Shanti Shwarup Mahto

AbstractFlash droughts cause rapid depletion in root-zone soil moisture and severely affect crop health and irrigation water demands. However, their occurrence and impacts in the current and future climate in India remain unknown. Here we use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India. Root-zone soil moisture simulations conducted using Variable Infiltration Capacity model show that flash droughts predominantly occur during the summer monsoon season (June–September) and driven by the intraseasonal variability of monsoon rainfall. Positive temperature anomalies during the monsoon break rapidly deplete soil moisture, which is further exacerbated by the land-atmospheric feedback. The worst flash drought in the observed (1951–2016) climate occurred in 1979, affecting more than 40% of the country. The frequency of concurrent hot and dry extremes is projected to rise by about five-fold, causing approximately seven-fold increase in flash droughts like 1979 by the end of the 21st century. The increased risk of flash droughts in the future is attributed to intraseasonal variability of the summer monsoon rainfall and anthropogenic warming, which can have deleterious implications for crop production, irrigation demands, and groundwater abstraction in India.

2016 ◽  
Vol 17 (6) ◽  
pp. 1781-1800 ◽  
Author(s):  
Reepal D. Shah ◽  
Vimal Mishra

Abstract Medium-range (~7 days) forecasts of agricultural and hydrologic droughts can help in decision-making in agriculture and water resources management. India has witnessed severe losses due to extreme weather events during recent years and medium-range forecasts of precipitation, air temperatures (maximum and minimum), and hydrologic variables (root-zone soil moisture and runoff) can be valuable. Here, the skill of the Global Ensemble Forecast System (GEFS) reforecast of precipitation and air temperatures is evaluated using retrospective data for the period of 1985–2010. It is found that the GEFS forecast shows better skill in the nonmonsoon season than in the monsoon season in India. Moreover, skill in temperature forecast is higher than that of precipitation in both the monsoon and nonmonsoon seasons. The lower skill in forecasting precipitation during the monsoon season can be attributed to representation of intraseasonal variability in precipitation from the GEFS. Among the selected regions, the northern, northeastern, and core monsoon region showed relatively lower skill in the GEFS forecast. Temperature and precipitation forecasts were corrected from the GEFS using quantile–quantile (Q–Q) mapping and linear scaling, respectively. Bias-corrected forecasts for precipitation and air temperatures were improved over the raw forecasts. The influence of corrected and raw forcings on medium-range soil moisture, drought, and runoff forecasts was evaluated. The results showed that because of high persistence, medium-range soil moisture forecasts are largely determined by the initial hydrologic conditions. Bias correction of precipitation and temperature forecasts does not lead to significant improvement in the medium-range hydrologic forecasting of soil moisture and drought. However, bias correcting raw GEFS forecasts can provide better predictions of the forecasts of precipitation and temperature anomalies over India.


2017 ◽  
Vol 30 (19) ◽  
pp. 7909-7931 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Jenq-Dar Tsay ◽  
Jun Matsumoto

Abstract A northwest–southeast-oriented summer monsoon trough exists between northern Indochina and northwestern Borneo. Ahead of this the South China Sea (SCS) trough is located at a convergent center west of the Philippines, which provides an environment favorable for rain-producing synoptic systems to produce rainfall over this center and form the SCS summer rainfall center. Revealed from the x–t diagram for rainfall, this rainfall center is developed by multiple-scale processes involved with the SCS trough (TR), tropical depression (TY), interaction of the SCS trough with the easterly wave/tropical depression (EI), and easterly wave (EW). It is found that 56% of this rainfall center is produced by the SCS trough, while 41% is generated by the other three synoptic systems combined. Apparently, the formation of the SCS summer monsoon rainfall center is contributed to by these four rain-producing synoptic systems from the SCS and the Philippines Sea. The Southeast Asian summer monsoon undergoes an interannual variation and exhibits an east–west-oriented cyclonic (anticyclonic) anomalous circulation centered at the western tropical Pacific east of the Luzon Strait. This circulation change is reflected by the deepening (filling) of the SCS summer monsoon trough, when the monsoon westerlies south of 15°N intensify (weaken). This interannual variation of the monsoon westerlies leads to the interannual variation of the SCS summer monsoon rainfall center to follow the Pacific–Japan oscillation of rainfall. The rainfall amount produced over this rainfall center during the weak monsoon season is about two-thirds of that produced during the strong monsoon season. The rain-production ratio between TR and TY + EI + EW is 60:38 during the strong monsoon season and 47:49 during the weak monsoon season.


2007 ◽  
Vol 20 (24) ◽  
pp. 5929-5945 ◽  
Author(s):  
Alice M. Grimm ◽  
Jeremy S. Pal ◽  
Filippo Giorgi

Abstract A link between peak summer monsoon rainfall in central-east Brazil, composing part of the South American monsoon core region, and antecedent conditions in spring is disclosed. Rainfall in this region during part of spring holds a significant inverse correlation with rainfall in peak summer, especially during ENSO years. A surface–atmosphere feedback hypothesis is proposed to explain this relationship: low spring precipitation leads to low spring soil moisture and high late spring surface temperature; this induces a topographically enhanced low-level anomalous convergence and cyclonic circulation over southeast Brazil that enhances the moisture flux from northern and central South America into central-east Brazil, setting up favorable conditions for excess rainfall. Antecedent wet conditions in spring lead to opposite anomalies. The main links in this hypothesis are confirmed through correlation analysis of observed data: spring precipitation is negatively correlated to late spring surface temperature in central-east Brazil, and surface temperature in southeast Brazil is positively correlated with peak summer monsoon precipitation in central-east Brazil. The intermediary links of the surface–atmosphere feedback are tested in sensitivity experiments with the regional climate model version 3 (RegCM3). These experiments confirm that the proposed links are possible: the reduced soil moisture in central-east Brazil is shown to increase the surface temperature and produce a cyclonic anomaly over southeast Brazil, as well as increased precipitation in central-east Brazil. A crucial role of the mountains of southeast Brazil in anchoring the patterns of intraseasonal variability, and sustaining the “dipolelike” precipitation mode observed over South America, is suggested. The low predictability of monsoon rainfall anomalies in central-east Brazil during the austral summer might be partially ascribed to the fact that the models do not well reproduce the topographical features and the land–atmosphere interactions that are important for the variability in that region.


2014 ◽  
Vol 29 (5) ◽  
pp. 1143-1154 ◽  
Author(s):  
Kyo-Sun Sunny Lim ◽  
Song-You Hong ◽  
Jin-Ho Yoon ◽  
Jongil Han

Abstract The most recent version of the simplified Arakawa–Schubert (SAS) cumulus scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) is implemented in the Weather Research and Forecasting (WRF) Model with a modification of the triggering condition and the convective mass flux in order to make it dependent on the model’s horizontal grid spacing. The East Asian summer monsoon season of 2006 is selected in order to evaluate the performance of the modified GFS SAS scheme. In comparison to the original GFS SAS scheme, the modified GFS SAS scheme shows overall better agreement with the observations in terms of the simulated monsoon rainfall. The simulated precipitation from the original GFS SAS scheme is insensitive to the model’s horizontal grid spacing, which is counterintuitive because the portion of the resolved clouds in a grid box should increase as the model grid spacing decreases. This behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. In addition, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts–Miller–Janjić) are chosen to investigate the role of a horizontal resolution on the simulated monsoon rainfall. Although the forecast skill of the surface rainfall does not always improve as the spatial resolution increases, the improvement of the probability density function of the rain rate with the smaller grid spacing is robust regardless of the cumulus parameterization scheme.


MAUSAM ◽  
2021 ◽  
Vol 49 (2) ◽  
pp. 229-234
Author(s):  
V. THAPLIYAL ◽  
M. RAJEEVAN ◽  
S. R. PATIL

Sea surface temperature (SST) variations over the three key regions over equatorial Pacific, viz., Nino (1+2), Nino 3 and Nino 4 and their relationships with Indian summer monsoon rainfall have been examined in this study. On monthly scale, SST anomalies over the three key regions show an oscillatory type of lagged correlations with Indian monsoon rainfall, positive correlations almost one year before the monsoon season (CC's are of the order of 0.3) which gradually change to significant negative correlation peaking in September/October during/after the monsoon season. The variations on seasonal scale also exhibit the same pattern of monthly variations but more smooth in nature. Composites of similar monsoon years show that during deficient (excess) monsoon years SST anomalies over all the three regions have warmer (cooler) trend which starts about 6 months prior to monsoon season. Tendencies of SST anomalies from previous winter (DJF) to summer (MAM) seasons over Nino 3 and Nino 4 regions are better predictors than EI-Nino categories currently being used in IMD's operational LRF model. By using tendency of SST over EI- Nino -4 region, in place of the category of EI-Nino, the 16 parameter operational Power Regression Model of IMD has been modified. The new forecast model shows better reduction in the forecast error.


2017 ◽  
Vol 30 (4) ◽  
pp. 1273-1289 ◽  
Author(s):  
Subhadeep Halder ◽  
Paul A. Dirmeyer

Abstract This observationally based study demonstrates the importance of the delayed hydrological response of snow cover and snowmelt over the Eurasian region and Tibet for variability of Indian summer monsoon rainfall during the first two months after onset. Using snow cover fraction and snow water equivalent data during 1967–2003, it is demonstrated that, although the snow-albedo effect is prevalent over western Eurasia, the delayed hydrological effect is strong and persistent over the eastern part. Long soil moisture memory and strong sensitivity of surface fluxes to soil moisture variations over eastern Asia and Tibet provide a mechanism for soil moisture anomalies generated by anomalies in winter and spring snowfall to affect rainfall during the initial months in summer. Dry soil moisture anomalies over the eastern Eurasian region associated with anomalous heating at the surface and midtroposphere help in anchoring of an anomalous upper-tropospheric “blocking” ridge around 100°E and its persistence. This not only leads to prolonged weakening of the subtropical westerly jet but also shifts its position southward of 30°N, followed by penetration of anomalous troughs in the westerlies into the Indian region. Simultaneously, intrusion of cold and dry air from the midlatitudes can reduce the convective instability and hence rainfall over India after the onset. Such a southward shift of the jet can also significantly weaken the vertical easterly wind shear over the Indian region in summer and lead to decrease in rainfall. This delayed hydrological effect also has the potential to modulate the snow–atmosphere coupling strength for temperature and precipitation in operational forecast models through soil moisture–evaporation–precipitation feedbacks.


Sign in / Sign up

Export Citation Format

Share Document