Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution

2018 ◽  
Vol 2 (2) ◽  
pp. 134-141 ◽  
Author(s):  
Linlin Cao ◽  
Qiquan Luo ◽  
Wei Liu ◽  
Yue Lin ◽  
Xiaokang Liu ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Zhang ◽  
Rutong Si ◽  
Hanshuo Liu ◽  
Ning Chen ◽  
Qi Wang ◽  
...  

Abstract Single atom catalysts exhibit particularly high catalytic activities in contrast to regular nanomaterial-based catalysts. Until recently, research has been mostly focused on single atom catalysts, and it remains a great challenge to synthesize bimetallic dimer structures. Herein, we successfully prepare high-quality one-to-one A-B bimetallic dimer structures (Pt-Ru dimers) through an atomic layer deposition (ALD) process. The Pt-Ru dimers show much higher hydrogen evolution activity (more than 50 times) and excellent stability compared to commercial Pt/C catalysts. X-ray absorption spectroscopy indicates that the Pt-Ru dimers structure model contains one Pt-Ru bonding configuration. First principle calculations reveal that the Pt-Ru dimer generates a synergy effect by modulating the electronic structure, which results in the enhanced hydrogen evolution activity. This work paves the way for the rational design of bimetallic dimers with good activity and stability, which have a great potential to be applied in various catalytic reactions.


Author(s):  
Regina Kluge ◽  
Richard W. Haid ◽  
Ifan Stephens ◽  
Federico Calle-Vallejo ◽  
Aliaksandr Bandarenka

Carbon is ubiquitous as an electrode material in electrochemical energy conversion devices. If used as support material, the evolution of H2 is undesired on carbon. However, recently carbon-based materials are...


2D Materials ◽  
2021 ◽  
Author(s):  
Kaikai Ma ◽  
Yunqi Zhao ◽  
Qingliang Liao ◽  
Zhaozhao Xiong ◽  
Xinting Li ◽  
...  

Abstract Graphdiyne (GDY), featured with unique sp2, sp-hybridized form and inherent inhomogeneous electron distribution, retains great expectation to be developed into highly efficient electrocatalysts for hydrogen evolution reaction (HER). However, the state-of-the-art GDY-based electrocatalysts still suffer from weak catalytic activity and sluggish reaction kinetics originating from the severe scarcity of in-plane active sites and insufficient electrical conductivity. Targeted at this bottleneck issue, electronic structure regulation, recognized as an extremely precise technical route, is promising to improve HER performances of carbon-based electrocatalysts. Herein, a facile controllable chemical etching strategy is well leveraged to introduce sp2-hybridized carbon-oxygen bonds (Csp2-O) into GDY for precise manipulation both of its electronic and spatial structures. Experimental results and theoretical calculations coherently manifest that Csp2-O introduction into GDY can not only induce its electronic structure upheaval to strengthen surface electron transport capability, but also trigger intensive carbon-oxygen p-p orbital hybridization to enhance the catalytic activity of acetylenic bond sites. As a result, the optimal GDY sample after etching delivers excellent HER performance with an overpotential of only 101 mV at a current density of 10 mA cm-2 and a low Tafel slope of 54 mV dec-1, which surpasses most of reported metal-free based electrocatalysts. This work provides a universal route for precise modulation of inherent electronic structure in GDY, and can be further extended to boost the overall performances of other carbon-based catalysts


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ali Han ◽  
Xiaofeng Zhou ◽  
Xijun Wang ◽  
Sheng Liu ◽  
Qihua Xiong ◽  
...  

AbstractMetallic tungsten disulfide (WS2) monolayers have been demonstrated as promising electrocatalysts for hydrogen evolution reaction (HER) induced by the high intrinsic conductivity, however, the key challenges to maximize the catalytic activity are achieving the metallic WS2 with high concentration and increasing the density of the active sites. In this work, single-atom-V catalysts (V SACs) substitutions in 1T-WS2 monolayers (91% phase purity) are fabricated to significantly enhance the HER performance via a one-step chemical vapor deposition strategy. Atomic-resolution scanning transmission electron microscopy (STEM) imaging together with Raman spectroscopy confirm the atomic dispersion of V species on the 1T-WS2 monolayers instead of energetically favorable 2H-WS2 monolayers. The growth mechanism of V SACs@1T-WS2 monolayers is experimentally and theoretically demonstrated. Density functional theory (DFT) calculations demonstrate that the activated V-atom sites play vital important role in enhancing the HER activity. In this work, it opens a novel path to directly synthesize atomically dispersed single-metal catalysts on metastable materials as efficient and robust electrocatalysts.


2020 ◽  
Vol 11 (16) ◽  
pp. 6691-6696
Author(s):  
Lan Wang ◽  
Xiaokang Liu ◽  
Linlin Cao ◽  
Wei Zhang ◽  
Tao Chen ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1513
Author(s):  
Jialing Kang ◽  
Mengjia Wang ◽  
Chenbao Lu ◽  
Changchun Ke ◽  
Pan Liu ◽  
...  

Due to the growing demand for energy and imminent environmental issues, hydrogen energy has attracted widespread attention as an alternative to traditional fossil energy. Platinum (Pt) catalytic hydrogen evolution reaction (HER) is a promising technology to produce hydrogen because the consumed electricity can be generated from renewable energy. To overcome the high cost of Pt, one effective strategy is decreasing the Pt nanoparticle (NP) size from submicron to nano-scale or even down to single atom level for efficient interacting water molecules. Herein, atomically dispersed Pt and ultra-fine Pt NPs embedded porous carbons were prepared through the pyrolysis of Pt porphyrin-based conjugated microporous polymer. As-prepared electrocatalyst exhibit high HER activity with overpotential of down to 31 mV at 10 mA cm−2, and mass activity of up to 1.3 A mgPt−1 at overpotential of 100 mV, which is double of commercial Pt/C (0.66 A mgPt−1). Such promising performance can be ascribed to the synergistic effect of the atomically dispersed Pt and ultra-fine Pt NPs. This work provides a new strategy to prepare porous carbons with both atomically dispersed metal active sites and corresponding metal NPs for various electrocatalysis, such as oxygen reduction reaction, carbon dioxide reduction, etc.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhanzhao Fu ◽  
Qiang Li ◽  
Xiaowan Bai ◽  
Yuhao Huang ◽  
Li Shi ◽  
...  

Carbon-based single-atom catalysts (SACs) have shown promising applications in the conversion of CO2 into CO. However, the deep reduction process for the production of high-value hydrocarbons is largely limited due...


Sign in / Sign up

Export Citation Format

Share Document