scholarly journals Pin1 inhibition improves the efficacy of ralaniten compounds that bind to the N-terminal domain of androgen receptor

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jacky K. Leung ◽  
Yusuke Imamura ◽  
Minoru Kato ◽  
Jun Wang ◽  
Nasrin R. Mawji ◽  
...  

AbstractTherapies for lethal castration-resistant prostate cancer (CRPC) are an unmet medical need. One mechanism underlying CRPC and resistance to hormonal therapies is the expression of constitutively active splice variant(s) of androgen receptor (AR-Vs) that lack its C-terminus ligand-binding domain. Transcriptional activities of AR-Vs and full-length AR reside in its N-terminal domain (NTD). Ralaniten is the only drug proven to bind AR NTD, and it showed promise of efficacy in Phase 1 trials. The peptidyl-prolyl isomerase Pin1 is frequently overexpressed in prostate cancer. Here we show that Pin1 interacted with AR NTD. The inhibition of Pin1 expression or its activity selectively reduced the transcriptional activities of full-length AR and AR-V7. Combination of Pin1 inhibitor with ralaniten promoted cell cycle arrest and had improved antitumor activity against CRPC xenografts in vivo compared to individual monotherapies. These findings support the rationale for therapy that combines a Pin1 inhibitor with ralaniten for treating CRPC.

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3488
Author(s):  
Fuqiang Ban ◽  
Eric Leblanc ◽  
Ayse Derya Cavga ◽  
Chia-Chi Flora Huang ◽  
Mark R. Flory ◽  
...  

Prostate cancer patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer. Resistance can occur when mutations in the androgen receptor (AR) render anti-androgen drugs ineffective or through the expression of constitutively active splice variants lacking the androgen binding domain entirely (e.g., ARV7). In this study, we are reporting the discovery of a novel AR-NTD covalent inhibitor 1-chloro-3-[(5-([(2S)-3-chloro-2-hydroxypropyl]amino)naphthalen-1-yl)amino]propan-2-ol (VPC-220010) targeting the AR-N-terminal Domain (AR-NTD). VPC-220010 inhibits AR-mediated transcription of full length and truncated variant ARV7, downregulates AR response genes, and selectively reduces the growth of both full-length AR- and truncated AR-dependent prostate cancer cell lines. We show that VPC-220010 disrupts interactions between AR and known coactivators and coregulatory proteins, such as CHD4, FOXA1, ZMIZ1, and several SWI/SNF complex proteins. Taken together, our data suggest that VPC-220010 is a promising small molecule that can be further optimized into effective AR-NTD inhibitor for the treatment of CRPC.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 119-119
Author(s):  
Ronan Le Moigne ◽  
Paul Pearson ◽  
Veronique Lauriault ◽  
Nan Hyung Hong ◽  
Peter Virsik ◽  
...  

119 Background: EPI-7386 is the newest of the “anitens”, a new class of compounds designed to inhibit androgen receptor activity by binding to the N-terminal domain (NTD) of the AR. Through this novel method of AR inhibition, anitens can block AR transcription even in the presence of AR ligand-binding domain (LBD) resistance mechanisms including point mutations and splice variants. Compared to the first generation aniten, EPI-506, which showed poor pharmacokinetic properties in patients, EPI-7386 is metabolically stable in vitro and in vivo. A Phase 1 clinical trial of EPI-7386 in metastatic castration-resistant prostate cancer patients failing standard of care therapies is ongoing and the pharmacokinetic properties of the drug in preclinical models as well as in the initial cohort of patients are presented. Methods: The metabolic stability of EPI-7386 was evaluated in vitro in mouse, rat, dog, monkey, and human hepatocytes. Projected PK parameters in humans were estimated from in vitro and in vivo clearance correlation (IVIVC). Induction of CYP isoforms was evaluated in human hepatocyte cultures. In patients, plasma concentrations of EPI-7386 were determined by LC-MS-MS, and 4-beta-hydroxycholesterol levels in plasma were followed over time as an indirect indicator of CYP3A induction. Results: In vitro hepatocyte studies demonstrated good metabolic stability for EPI-7386 with an in vitro half-life > 360 min. In animal PK studies, the terminal half-life of EPI-7386 was approximately 5.8 hours in mouse, 4.9 hours in rat, 13.4 hours in dog and the plasma clearance was low across species. The oral bioavailability of EPI-7386 ranged from 33–112% in mouse to > 100% in rat and dog. Using IVIVC, a predicted human clearance of 0.16–0.39 mL/min/kg was calculated for EPI-7386, which was in line with allometric scaling from animal PK parameters. Human PK profiles of different doses of EPI-7386 were simulated using predicted oral bioavailability, clearance, and volume of distribution. Cmax and AUC0–24h for the Phase 1 first-in-human study (NCT04421222) starting dose of 200 mg dose were predicted to be 6,915 ng/mL and 137,278 ng•h/mL respectively. A comparison between estimated PK parameters and actual values observed in the first patient cohort will be presented. Human hepatocyte CYP induction studies showed that EPI-7386 is not an inducer of CYP1A2 but may have the potential to induce CYP2B6 and CYP3A4. A comparison of 4-beta-hydroxy cholesterol levels measured during the phase 1 will be presented along with a comparison drawn from in vitro models. Conclusions: Pre-clinical characterization predicts that EPI-7386 has the appropriate PK and metabolic properties to afford exposure in patients at potentially efficacious levels following once-daily oral administration. PK measurements in the initial cohort of patients treated in the Phase 1 study will be presented. Clinical trial information: NCT04421222.


2013 ◽  
Vol 31 (6_suppl) ◽  
pp. 94-94
Author(s):  
Yoshiaki Yamamoto ◽  
Eliana Beraldi ◽  
Yohann Loriot ◽  
Tianyuan Zhou ◽  
Youngsoo Kim ◽  
...  

94 Background: MDV3100 is a potent androgen receptor (AR) antagonist with activity in castration resistant prostate cancer (CRPC); however, progression to MDV3100-resistant (MDV-R) CRPC frequently occurs with rising serum PSA levels, implicating AR full length or variants in disease progression. We studied the activity of Generation 2.5 antisense oligonucleotide (ASO) targeting the AR full length (ARfl) and splice variants in MDV-R CRPC models. Methods: and Results: ThreeASOs targeting exon 1, intron 1, or exon 8 were designed to suppress ARfl and known AR splice variants. We generated by selection MDV-R LNCaP-derived sub-lines that uniformly expressed high levels of both ARfl and AR-V7 compared to CRPC LNCaP cell lines. MDV-3100 induced time- and dose-dependent increases in ARfl and AR-V7 protein levels; ARfl levels were ~20-fold higher than AR-V7. All 3 AR-ASO decreased ARfl and PSA expression. Exon 1 ASO decreased expression of both ARfl and AR-V7 in MDV-R-LNCaP cells; in contrast, exon 8 ASO decreased ARfl without reducing AR-V7 levels. Exon 1 ASO also most potently suppressed ARfl and splice variants in M12 cells stably overexpressing AR splice variants AR-V7 and AR-V567es. Despite these differential effects on ARfl and splice variant knockdown, the AR ASO similarly inhibited cell growth and induced apoptosis and G1 cell cycle arrest in LNCaP-derived CRPC and MDV-R cell lines. In 22RV-1 cells (which express endogenous ARfl and AR-V7), exon 1 ASO more potently suppressed ARfl and AR-V7 levels, AR transcriptional activity and AR-regulated gene expression compared to exon 8 ASO, but inhibition of cell growth did not differ significantly. Exon 1 ASO was evaluated in vivo in MDV-R49F CRPC LNCaP xenografts; mean tumor volume and serum PSA levels decreased significantly by 40% and 50%, respectively, compared to controls. Conclusions: While MDV-3100 induces both ARfl and AR-V7 levels, the biologic consequences appear cell line dependent and mainly driven by ARfl. AR-ASO knockdown of ARfl and its splice variants suppresses MDV-R LNCaP tumor growth, providing pre-clinical proof of principle to support clinical evaluation in post-AR pathway inhibitor CRPC.


2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 220-220
Author(s):  
Ronan Le Moigne ◽  
Han-Jie Zhou ◽  
Nasrin R Mawji ◽  
C. Adriana Banuelos ◽  
Jun Wang ◽  
...  

220 Background: EPI-506, pro-drug of EPI-002, was a first-in-class oral small molecule from the Aniten family of compounds, which inhibit androgen receptor (AR) activity by binding to the N-terminal domain of the AR. EPI-506 was tested in a Phase 1 study in men with metastatic castration-resistant prostate cancer (mCRPC) resistant to current therapies and demonstrated a favorable tolerability profile with signs of moderate efficacy. Metabolic vulnerabilities in the chemical scaffold of EPI-506 were identified and new Aniten molecules, EPI-7170 and EPI-7245 , with improved potency, metabolic stability and pharmaceutical properties have been generated. Methods: Chemical structure activity relationships were developed in order to increase molecule potency in cellular and in vivo assays, while metabolic stability improvements were assessed in in vitro ADME assays and in animal pharmacokinetic studies. In addition, the on-target activity and selectivity was also optimized using a variety of cellular experiments. Results: Next generation Anitens demonstrated a 10-20 fold improvement on AR-driven cellular potency, with IC50’s of 0.5-1 uM when compared to 10-12 uM for EPI-002. In vitro proliferation assays demonstrated on target activity, with an IC50 ~ 2 uM in LNCaP and > 10 uM in the AR-independent cell model PC-3. EPI-7170 was also active in AR-V7-driven LNCaP95 cells. The antiproliferative effect was in alignment with the inhibitory effect on a subset of AR driven genes. In vivo activity in castrated mice bearing LNCaP tumors showed tumor growth inhibition of approximately 70%. While EPI-7170 represents a major advance, subsequent chemistry efforts led to the generation of EPI-7245 and other next generation Anitens which exhibit IC50’s < 500 nM and favorable ADME and PK profiles. Conclusions: Promising next-generation Aniten compounds have been identified. Major chemistry efforts led to the identification of several Anitens with > 10-20 fold improvements in cellular potency compared to EPI-506 which are also metabolically stable. IND-selection preclinical studies are underway on the most promising Aniten’s with an IND submission planned shortly.


2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 257-257 ◽  
Author(s):  
Ronan Le Moigne ◽  
Han-Jie Zhou ◽  
Jon K. Obst ◽  
C. Adriana Banuelos ◽  
Kunzhong Jian ◽  
...  

257 Background: Aniten compounds bind to the N-terminal domain (NTD) of the androgen receptor (AR) and inhibit AR dependent transcription. EPI-506, the pro-drug of EPI-002, was the first AR NTD inhibitor tested in a Phase 1 study in men with metastatic castration-resistant prostate cancer (mCRPC). The drug was well-tolerated but required high doses. At doses >1280 mg, EPI-506 treatment resulted in PSA declines; however, these were minor and of short duration, reflecting EPI-506’s low potency and short half-life. To understand EPI-506’s metabolic vulnerabilities, patient plasma samples were analyzed to identify metabolites. Methods: PSA serum levels were assessed after a month of dosing. Patient plasma samples were analyzed and pharmacokinetic (PK) parameters calculated. Three plasma samples from patients (one 80 and two 3,600 mg doses), were pooled across timepoints and metabolites were analyzed. EPI-506 metabolism was assessed in in vitro ADME assays and metabolite activity was measured. Results: EPI-002 patient plasma profiles exhibited dose-proportional Cmax and AUC following once or twice-daily EPI-506 administration. PSA declines (range of 8-29%) were observed, especially at higher doses (≥ 1,280 mg). A total of 19 metabolites were identified. Metabolite M19, a glycerol-moiety oxidant, was the major drug-related component. Other metabolic pathways included O-glucuronidation, sulfation, carboxylic acid formation, and oxidative chlorine loss. The major metabolites were tested in an AR driven reporter assay and were shown to be inactive. Interestingly, in vitro ADME assays predicted glucuronidation and sulfation but not cytochrome dependent metabolism. Conclusions: EPI-506 was tested in a phase 1 trial and showed minor PSA declines. The drug was well-tolerated but was highly metabolized. Patient plasma samples identified 19 metabolites. Newer molecules have been synthesized to address EPI-002’s metabolic liabilities and demonstrate > 20-fold improved potency and higher stability. These next generation Anitens are currently being characterized for IND filing. Clinical trial information: NCT02606123.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Fu-Ju Chou ◽  
ChangYi Lin ◽  
Hao Tian ◽  
WanYing Lin ◽  
Bosen You ◽  
...  

Abstract The FDA-approved anti-androgen Enzalutamide (Enz) has been used successfully as the last line therapy to extend castration-resistant prostate cancer (CRPC) patients’ survival by an extra 4.8 months. However, CRPC patients eventually develop Enz-resistance that may involve the induction of the androgen receptor (AR) splicing variant ARv7. Here we found that Cisplatin (Cis) or Carboplatin, currently used in chemotherapy/radiation therapy to suppress tumor progression, could restore the Enz sensitivity in multiple Enz-resistant (EnzR) CRPC cells via directly degrading/suppressing the ARv7. Combining Cis or Carboplatin with Enz therapy can also delay the development of Enz-resistance in CRPC C4-2 cells. Mechanism dissection found that Cis or Carboplatin might decrease the ARv7 expression via multiple mechanisms including targeting the lncRNA-Malat1/SF2 RNA splicing complex and increasing ARv7 degradation via altering ubiquitination. Preclinical studies using in vivo mouse model with implanted EnzR1-C4-2 cells also demonstrated that Cis plus Enz therapy resulted in better suppression of EnzR CRPC progression than Enz treatment alone. These results not only unveil the previously unrecognized Cis mechanism to degrade ARv7 via targeting the Malat1/SF2 complex and ubiquitination signals, it may also provide a novel and ready therapy to further suppress the EnzR CRPC progression in the near future.


Sign in / Sign up

Export Citation Format

Share Document