scholarly journals Development of an Androgen Receptor Inhibitor Targeting the N-Terminal Domain of Androgen Receptor for Treatment of Castration Resistant Prostate Cancer

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3488
Author(s):  
Fuqiang Ban ◽  
Eric Leblanc ◽  
Ayse Derya Cavga ◽  
Chia-Chi Flora Huang ◽  
Mark R. Flory ◽  
...  

Prostate cancer patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer. Resistance can occur when mutations in the androgen receptor (AR) render anti-androgen drugs ineffective or through the expression of constitutively active splice variants lacking the androgen binding domain entirely (e.g., ARV7). In this study, we are reporting the discovery of a novel AR-NTD covalent inhibitor 1-chloro-3-[(5-([(2S)-3-chloro-2-hydroxypropyl]amino)naphthalen-1-yl)amino]propan-2-ol (VPC-220010) targeting the AR-N-terminal Domain (AR-NTD). VPC-220010 inhibits AR-mediated transcription of full length and truncated variant ARV7, downregulates AR response genes, and selectively reduces the growth of both full-length AR- and truncated AR-dependent prostate cancer cell lines. We show that VPC-220010 disrupts interactions between AR and known coactivators and coregulatory proteins, such as CHD4, FOXA1, ZMIZ1, and several SWI/SNF complex proteins. Taken together, our data suggest that VPC-220010 is a promising small molecule that can be further optimized into effective AR-NTD inhibitor for the treatment of CRPC.

2012 ◽  
Vol 72 (14) ◽  
pp. 3457-3462 ◽  
Author(s):  
Rong Hu ◽  
Changxue Lu ◽  
Elahe A. Mostaghel ◽  
Srinivasan Yegnasubramanian ◽  
Meltem Gurel ◽  
...  

Data in Brief ◽  
2021 ◽  
Vol 34 ◽  
pp. 106774
Author(s):  
Tianfang Ma ◽  
Nathan Ungerleider ◽  
Derek Y. Zhang ◽  
Eva Corey ◽  
Erik K. Flemington ◽  
...  

Endocrinology ◽  
2020 ◽  
Author(s):  
Harika Nagandla ◽  
Matthew J Robertson ◽  
Vasanta Putluri ◽  
Nagireddy Putluri ◽  
Cristian Coarfa ◽  
...  

Abstract Androgen receptor (AR) signaling continues to drive castration resistant prostate cancer (CRPC) in spite of androgen deprivation therapy (ADT). Constitutively active shorter variants of AR, lacking the ligand binding domain, are frequently expressed in CRPC and have emerged as a potential mechanism for prostate cancer to escape ADT. ARv7 and AR v567es are two of the most commonly detected variants of AR in clinical samples of advanced, metastatic prostate cancer. It is not clear if variants of AR merely act as weaker substitutes for AR or can mediate unique isoform specific activities different from AR. In this study, we employed LNCaP prostate cancer cell lines with inducible expression of ARv7 or AR v567es to delineate similarities and differences in transcriptomics, metabolomics and lipidomics resulting from the activation of AR, ARv7 or AR v567es. While the majority of target genes were similarly regulated by the action of all three isoforms, we found a clear difference in transcriptomic activities of AR versus the variants, and a few differences between ARv7 and AR v567es. Some of the target gene regulation by AR isoforms was similar in the VCaP background as well. Differences in downstream activities of AR isoforms were also evident from comparison of the metabolome and lipidome in an LNCaP model. Overall our study implies that shorter variants of AR are capable of mediating unique downstream activities different from AR and some of these are isoform specific.


Sign in / Sign up

Export Citation Format

Share Document