scholarly journals Crystal structures of aconitase X enzymes from bacteria and archaea provide insights into the molecular evolution of the aconitase superfamily

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Seiya Watanabe ◽  
Yohsuke Murase ◽  
Yasunori Watanabe ◽  
Yasuhiro Sakurai ◽  
Kunihiko Tajima

AbstractAconitase superfamily members catalyze the homologous isomerization of specific substrates by sequential dehydration and hydration and contain a [4Fe-4S] cluster. However, monomeric and heterodimeric types of function unknown aconitase X (AcnX) have recently been characterized as a cis-3-hydroxy-L-proline dehydratase (AcnXType-I) and mevalonate 5-phosphate dehydratase (AcnXType-II), respectively. We herein elucidated the crystal structures of AcnXType-I from Agrobacterium tumefaciens (AtAcnX) and AcnXType-II from Thermococcus kodakarensis (TkAcnX) without a ligand and in complex with substrates. AtAcnX and TkAcnX contained the [2Fe-2S] and [3Fe-4S] clusters, respectively, conforming to UV and EPR spectroscopy analyses. The binding sites of the [Fe-S] cluster and substrate were clearlydifferent from those that were completely conserved in other aconitase enzymes; however, theoverall structural frameworks and locations of active sites were partially similar to each other.These results provide novel insights into the evolutionary scenario of the aconitase superfamilybased on the recruitment hypothesis.

1988 ◽  
Vol 255 (4) ◽  
pp. F736-F748 ◽  
Author(s):  
R. L. Duncan ◽  
W. M. Grogan ◽  
L. B. Kramer ◽  
C. O. Watlington

This study tests the hypothesis, in A6 epithelia, that 1) corticosterone stimulates active Na+ transport (short-circuit current, Isc) by an additional receptor mechanism to the type I (mineralocorticoid) and type II (glucocorticoid) mechanisms shared with aldosterone (Aldo) and 2) that the agonist may be 6 beta-OH-corticosterone made in the effector cell. The dose-response relationship of corticosterone at 24 h resolves into two components, by curve fitting, with a 50% effective concentration (EC50) for 10% of maximum Isc stimulation of 2 X 10(-9) M and an EC50 for the other 90% of 3 X 10(-7) M. The EC50 of the smaller component correlates with the apparent dissociation constant (K'd) of corticosterone for high affinity (type II) nuclear binding sites shared with Aldo. In unlabeled analogue competition studies Aldo and corticosterone displaced nuclear binding equally below 10(-8) M [3H]corticosterone, indicating only shared sites. However, nonshared saturable sites (displaced by corticosterone but not by Aldo) were found at [3H]-corticosterone concentrations above 10(-8) M. Concentration-binding curves performed with [3H]corticosterone, in presence of 1,000 X Aldo to displace shared sites, revealed a single class of binding sites with a half-maximal saturation of 2 X 10(-7) M, which is quite similar to the EC50 of the lower affinity component of Isc stimulation by corticosterone at 24 h. Reversed phase high-pressure liquid chromatography of nuclear extracts indicates that the saturable component of bound [3H] was 6 beta-OH-[3H]corticosterone derived from [3H]corticosterone. Thus, A6 cells metabolize corticosterone to 6 beta-OH-corticosterone, which in turn occupies lower-affinity receptors not shared with Aldo or corticosterone, to mediate most of the active Na+ transport stimulation by corticosterone.


1988 ◽  
Vol 34 (10) ◽  
pp. 2053-2057 ◽  
Author(s):  
S Raam ◽  
D M Vrabel

Abstract We present evidence to show that monoclonal antibodies to estrogen receptors (ER) in solid phase recognize the secondary estrogen binding sites with moderate to low affinity for estradiol (E2). An excellent quantitative agreement was found in five cytosols between the ER values obtained by the enzyme immunoassay (ER-EIA) and the amount of secondary estrogen binding sites measured by the assay involving dextran-coated charcoal (Clin Chem 1986;32:1496). The immunoreactive protein recognized by the antibody-coated beads, when allowed to react with ER(+) cytosols, is shown to bind [3H]estradiol only when the ligand concentration exceeds 8 nmol/L. Further biochemical and functional characterization of the immunoreactive protein is required to establish similarities/dissimilarities between this protein, high-affinity Type I ER sites, and the secondary sites such as Type II sites.


1989 ◽  
Vol 257 (1) ◽  
pp. R87-R95 ◽  
Author(s):  
A. Gnionsahe ◽  
M. Claire ◽  
N. Koechlin ◽  
J. P. Bonvalet ◽  
N. Farman

Distal segment of several amphibians exhibits aldosterone-modulated ion transport properties. On the other hand, A6 cells, derived from Xenopus laevis (XL) kidney, are aldosterone sensitive. We examined the distribution of aldosterone binding sites in isolated tubules of XL compared with rabbit. After incubation with 2 nM [3H]aldosterone, microdissected tubular segments from proximal (PT), distal straight segment (DST), and flask cell collecting (CT) tubules from XL and from rabbit cortical thick ascending limb (CTAL), connecting (CNT), and collecting (CCD) tubules were processed for dry film autoradiography. In XL, specific nuclear labeling of type I (mineralocorticoid) sites was restricted to DST. Labeling of type II (glucocorticoid) sites was present all along the tubule. No specific cytoplasmic labeling was observed, except for type II sites in PT. In the rabbit, aldosterone binds to both type I and type II sites in the three tubular segments studied. In these segments, the binding was about fourfold higher than in DST of XL. These results bring direct evidence in designating the distal tubule of amphibians as a target epithelium for aldosterone. In addition, they suggest that A6 cell line may derive from DST of the Xenopus nephron.


The crystallographic characteristics of deformation twinning are derived by considering the atomic movements which occur at the moving interface as a twin propagates. This is facilitated by making use of the notation of the tensor calculus, and general expressions, valid for all crystal structures, are obtained giving the magnitude of the twinning shear and relating the twinning elements for both type I and type II twinning. The atomic shuffles, which in general must accompany the twinning shear in both single and multiple lattice structures, are examined in detail and expressions are derived for their magnitudes and directions for the cases of the four classical orientation relationships associated with deformation twinning. The use of these expressions in predicting operative twinning modes is described and the relations between this theory and other recent theories of the crystallography of deformation twinning are discussed.


Nature ◽  
1983 ◽  
Vol 306 (5938) ◽  
pp. 57-60 ◽  
Author(s):  
Mathew M. S. Lo ◽  
Debra L. Niehoff ◽  
Michael J. Kuhar ◽  
Solomon H. Snyder

IUCrJ ◽  
2017 ◽  
Vol 4 (3) ◽  
pp. 206-214 ◽  
Author(s):  
Geetha Bolla ◽  
Vladimir Chernyshev ◽  
Ashwini Nangia

Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM),p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthonR32(9)R22(8)R32(9) with three differentsynamides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, beinganti(type I) orsyn(type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O...H, N...H, Cl...H and C...H interactions. The physicochemical properties of these cocrystals are under study.


1988 ◽  
Vol 118 (4) ◽  
pp. 513-520 ◽  
Author(s):  
C. A. Conover ◽  
P. Misra ◽  
R. L. Hintz ◽  
R. G. Rosenfeld

Abstract. Specific, high affinity binding of 125I-IGF-I to the type I IGF receptor on human fibroblast monolayers was not altered by varying feeding schedules, serum lots, washing procedures, or incubation times and temperatures. However, markedly different competitive binding curves were obtained when different iodinated IGF-I preparations were used. Five of six radioligands bound preferentially to the type I IGF receptor on human fibroblast monolayers, with 50% displacement at 4–8 μg/l unlabelled IGF-I; with one radioligand a paradoxical 20–200% increase in 125I-IGF-I binding was observed at low concentrations of unlabelled IGF-I, while concentrations as high as 100 μg/l IGF-I failed to displace this radioligand. The latter binding pattern cannot be accounted for by 125I-IGF-I binding to the type II IGF receptor. These data indicate that various radioligands may have preferential affinities for different IGF-I binding sites on human fibroblast monolayers.


Sign in / Sign up

Export Citation Format

Share Document