Effects of climate engineering on agriculture

Nature Food ◽  
2021 ◽  
Author(s):  
Ben Kravitz
Keyword(s):  
Author(s):  
Patrick J. Applegate ◽  
K. Keller

Engineering the climate through albedo modification (AM) could slow, but probably would not stop, melting of the Greenland Ice Sheet. Albedo modification is a technology that could reduce surface air temperatures through putting reflective particles into the upper atmosphere. AM has never been tested, but it might reduce surface air temperatures faster and more cheaply than reducing greenhouse gas emissions. Some scientists claim that AM would also prevent or reverse sea-level rise. But, are these claims true? The Greenland Ice Sheet will melt faster at higher temperatures, adding to sea-level rise. However, it's not clear that reducing temperatures through AM will stop or reverse sea-level rise due to Greenland Ice Sheet melting. We used a computer model of the Greenland Ice Sheet to examine its contributions to future sea level rise, with and without AM. Our results show that AM would probably reduce the rate of sea-level rise from the Greenland Ice Sheet. However, sea-level rise would likely continue even with AM, and the ice sheet would not regrow quickly. Albedo modification might buy time to prepare for sea-level rise, but problems could arise if policymakers assume that AM will stop sea-level rise completely.


Science ◽  
2016 ◽  
Vol 352 (6293) ◽  
pp. 1526-1527
Author(s):  
D. Keith ◽  
G. Wagner ◽  
J. Moreno-Cruz
Keyword(s):  

2012 ◽  
Vol 12 (4) ◽  
pp. 521-523
Author(s):  
Axel Michaelowa

2016 ◽  
Author(s):  
Daniele Visioni ◽  
Giovanni Pitari ◽  
Valentina Aquila

Abstract. Sulfate geoengineering has been proposed as an affordable and climate-effective means for temporarily offset the warming produced by the increase of well mixed greenhouse gases (WMGHG). This climate engineering technique has been planned for a timeframe of a few decades needed to implement global inter-governmental measures needed to achieve stabilization of the atmospheric content of WMGHGs (CO2 in particular). The direct radiative effects of sulfur injection in the tropical lower stratosphere can be summarized as increasing shortwave scattering with consequent tropospheric cooling and increasing long- wave absorption with stratospheric warming. Indirect radiative effects are related to induced changes in the ozone distribution, stratospheric water vapor abundance, formation and size of upper tropospheric cirrus ice particles and lifetime of longlived species, namely CH4 in connection with OH changes through several photochemical mechanisms. A direct comparison of the net effects of WMGHG increase with direct and indirect effects of sulfate geoengineering may help fine-tune the best amount of sulfate to be injected in an eventual realization of the experiment. However, we need to take into account large uncertainties in the estimate of some of these aerosol effects, such as cirrus ice particle size modifications.


2016 ◽  
Vol 7 (4) ◽  
pp. 783-796 ◽  
Author(s):  
Vera Heck ◽  
Jonathan F. Donges ◽  
Wolfgang Lucht

Abstract. The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 °C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.


Nature ◽  
2018 ◽  
Vol 553 (7686) ◽  
pp. 27-27
Author(s):  
Chris Vivian ◽  
Phillip Williamson ◽  
Philip Boyd
Keyword(s):  

2010 ◽  
Vol 115 (D22) ◽  
Author(s):  
Caspar M. Ammann ◽  
Warren M. Washington ◽  
Gerald A. Meehl ◽  
Lawrence Buja ◽  
Haiyan Teng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document