scholarly journals Tropical cyclones near landfall can induce their own intensification through feedbacks on radiative forcing

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Charlie C. F. Lok ◽  
Johnny C. L. Chan ◽  
Ralf Toumi

AbstractRapid intensification of near-landfall tropical cyclones is very difficult to predict, and yet has far-reaching consequences due to their disastrous impact to the coastal areas. The focus for improving predictions of rapid intensification has so far been on environmental conditions. Here we use the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System to simulate tropical cyclones making landfall in South China: Nida (2016), Hato (2107) and Mangkhut (2018). Two smaller storms (Hato and Nida) undergo intensification, which is induced by the storms themselves through their extensive subsidence ahead of the storms, leading to clear skies and strong solar heating of the near-shore sea water over a shallow continental shelf. This heating provides latent heat to the storms, and subsequently intensification occurs. In contrast, such heating does not occur in the larger storm (Mangkhut) due to its widespread cloud cover. This results imply that to improve the prediction of tropical cyclone intensity changes prior to landfall, it is necessary to correctly simulate the short-term evolution of near-shore ocean conditions.

2015 ◽  
Vol 143 (11) ◽  
pp. 4476-4492 ◽  
Author(s):  
George R. Alvey III ◽  
Jonathan Zawislak ◽  
Edward Zipser

Abstract Using a 15-yr (1998–2012) multiplatform dataset of passive microwave satellite data [tropical cyclone–passive microwave (TC-PMW)] for Atlantic and east Pacific storms, this study examines the relative importance of various precipitation properties, specifically convective intensity, symmetry, and area, to the spectrum of intensity changes observed in tropical cyclones. Analyses are presented not only spatially in shear-relative quadrants around the center, but also every 6 h during a 42-h period encompassing 18 h prior to onset of intensification to 24 h after. Compared to those with slower intensification rates, storms with higher intensification rates (including rapid intensification) have more symmetric distributions of precipitation prior to onset of intensification, as well as a greater overall areal coverage of precipitation. The rate of symmetrization prior to, and during, intensification increases with increasing intensity change as rapidly intensifying storms are more symmetric than slowly intensifying storms. While results also clearly show important contributions from strong convection, it is concluded that intensification is more closely related to the evolution of the areal, radial, and symmetric distribution of precipitation that is not necessarily intense.


2007 ◽  
Vol 64 (10) ◽  
pp. 3562-3578 ◽  
Author(s):  
Chun-Chieh Wu ◽  
Chia-Ying Lee ◽  
I-I. Lin

Abstract The rapid intensification of Hurricane Katrina followed by the devastation of the U.S. Gulf States highlights the critical role played by an upper-oceanic thermal structure (such as the ocean eddy or Loop Current) in affecting the development of tropical cyclones. In this paper, the impact of the ocean eddy on tropical cyclone intensity is investigated using a simple hurricane–ocean coupled model. Numerical experiments with different oceanic thermal structures are designed to elucidate the responses of tropical cyclones to the ocean eddy and the effects of tropical cyclones on the ocean. This simple model shows that rapid intensification occurs as a storm encounters the ocean eddy because of enhanced heat flux. While strong winds usually cause strong mixing in the mixed layer and thus cool down the sea surface, negative feedback to the storm intensity of this kind is limited by the presence of a warm ocean eddy, which provides an insulating effect against the storm-induced mixing and cooling. Two eddy factors, FEDDY-S and FEDDY-T, are defined to evaluate the effect of the eddy on tropical cyclone intensity. The efficiency of the eddy feedback effect depends on both the oceanic structure and other environmental parameters, including properties of the tropical cyclone. Analysis of the functionality of FEDDY-T shows that the mixed layer depth associated with either the large-scale ocean or the eddy is the most important factor in determining the magnitude of eddy feedback effects. Next to them are the storm’s translation speed and the ambient relative humidity.


2013 ◽  
Vol 26 (10) ◽  
pp. 3231-3240 ◽  
Author(s):  
Gabriele Villarini ◽  
Gabriel A. Vecchi

Abstract Tropical cyclones—particularly intense ones—are a hazard to life and property, so an assessment of the changes in North Atlantic tropical cyclone intensity has important socioeconomic implications. In this study, the authors focus on the seasonally integrated power dissipation index (PDI) as a metric to project changes in tropical cyclone intensity. Based on a recently developed statistical model, this study examines projections in North Atlantic PDI using output from 17 state-of-the-art global climate models and three radiative forcing scenarios. Overall, the authors find that North Atlantic PDI is projected to increase with respect to the 1986–2005 period across all scenarios. The difference between the PDI projections and those of the number of North Atlantic tropical cyclones, which are not projected to increase significantly, indicates an intensification of North Atlantic tropical cyclones in response to both greenhouse gas (GHG) increases and aerosol changes over the current century. At the end of the twenty-first century, the magnitude of these increases shows a positive dependence on projected GHG forcing. The projected intensification is significantly enhanced by non-GHG (primarily aerosol) forcing in the first half of the twenty-first century.


2019 ◽  
Vol 34 (4) ◽  
pp. 905-922 ◽  
Author(s):  
Timothy L. Olander ◽  
Christopher S. Velden

Abstract The advanced Dvorak technique (ADT) is used operationally by tropical cyclone forecast centers worldwide to help estimate the intensity of tropical cyclones (TCs) from operational geostationary meteorological satellites. New enhancements to the objective ADT have been implemented by the algorithm development team to further expand its capabilities and precision. The advancements include the following: 1) finer tuning to aircraft-based TC intensity estimates in an expanded development sample, 2) the incorporation of satellite-based microwave information into the intensity estimation scheme, 3) more sophisticated automated TC center-fixing routines, 4) adjustments to the intensity estimates for subtropical systems and TCs undergoing extratropical transition, and 5) addition of a surface wind radii estimation routine. The goals of these upgrades and others are to provide TC analysts/forecasters with an expanded objective guidance tool to more accurately estimate the intensity of TCs and those storms forming from, or converting into, hybrid/nontropical systems. The 2018 TC season is used to illustrate the performance characteristics of the upgraded ADT.


MAUSAM ◽  
2021 ◽  
Vol 48 (2) ◽  
pp. 157-168
Author(s):  
R. R. KELKAR

    ABSTRACT. Capabilities of meteorological satellites have gone a long way in meeting requirements of synoptic analysis and forecasting of tropical cyclones. This paper shows the impact made by the satellite data in the intensity estimation and track prediction of tropical cyclones in the Indian Seas and also reviews the universally applied Dvorak algorithm for performing tropical cyclone intensity analysis. Extensive use of Dvorak's intensity estimation scheme has revealed many of its limitations and elements of subjectivity in the analysis of tropical cyclones over the Arabian Sea and the Bay of Bengal, which, like cyclones in other ocean basins, also exhibit wide structural variability as seen in the satellite imagery. Satellite-based cyclone tracking techniques include: (i) use of satellite-derived mean wind flow,             (ii) animation of sequence of satellite images and extrapolation of the apparent motion of the cloud system and (iii) monitoring changes in the upper level moisture patterns in the water vapour absorption channel imagery. Satellite-based techniques on tropical cyclone intensity estimation and track prediction have led to very significant improvement in disaster warning and consequent saving of life and property.    


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1308
Author(s):  
Eric A. Hendricks ◽  
Jonathan L. Vigh ◽  
Christopher M. Rozoff

A minimal modeling system for understanding tropical cyclone intensity and wind structure changes is introduced: Shallow Water Axisymmetric Model for Intensity (SWAMI). The forced, balanced, axisymmetric shallow water equations are reduced to a canonical potential vorticity (PV) production and inversion problem, whereby PV is produced through a mass sink (related to the diabatic heating) and inverted through a PV/absolute–angular–momentum invertibility principle. Because the invertibility principle is nonlinear, a Newton–Krylov method is used to iteratively obtain a numerical solution to the discrete problem. Two versions of the model are described: a physical radius version which neglects radial PV advection (SWAMI-r) and a potential radius version that naturally includes the advection in the quasi-Lagrangian coordinate (SWAMI-R). In idealized numerical simulations, SWAMI-R produces a thinner and more intense PV ring than SWAMI-r, demonstrating the role of axisymmetric radial PV advection in eyewall evolution. SWAMI-R always has lower intensification rates than SWAMI-r because the reduction in PV footprint effect dominates the peak magnitude increase effect. SWAMI-r is next demonstrated as a potentially useful short-term wind structure forecasting tool using the newly added FLIGHT+ Dataset azimuthal means for initialization and forcing on three example cases: a slowly intensifying event, a rapid intensification event, and a secondary wind maximum formation event. Then, SWAMI-r is evaluated using 63 intensifying cases. Even though the model is minimal, it is shown to have some skill in short-term intensity prediction, highlighting the known critical roles of the relationship between the radial structures of the vortex inertial stability and diabatic heating rate. Because of the simplicity of the models, SWAMI simulations are completed in seconds. Therefore, they may be of some use for hurricane nowcasting to short-term (less than 24 h) intensity and structure forecasting. Due to its favorable assumptions for tropical cyclone intensification, a potential use of SWAMI is a reasonable short-term upper-bound intensity forecast if the storm intensifies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Saiprasanth Bhalachandran ◽  
R. Nadimpalli ◽  
K. K. Osuri ◽  
F. D. Marks ◽  
S. Gopalakrishnan ◽  
...  

AbstractWe present a numerical investigation of the processes that influenced the contrasting rapid intensity changes in Tropical Cyclones (TC) Phailin and Lehar (2013) over the Bay of Bengal. Our emphasis is on the significant differences in the environments experienced by the TCs within a few weeks and the consequent differences in their organization of vortex-scale convection that resulted in their different rapid intensity changes. The storm-relative proximity, intensity, and depth of the subtropical ridge resulted in the establishment of a low-sheared environment for Phailin and a high-sheared environment for Lehar. Our primary finding here is that in Lehar’s sheared vortex, the juxtaposition in the azimuthal phasing of the asymmetrically distributed downward eddy flux of moist-entropy through the top of the boundary layer, and the radial eddy flux of moist-entropy within the boundary layer in the upshear left-quadrant of Lehar (40–80 km radius) establishes a pathway for the low moist-entropy air to intrude into the vortex from the environment. Conversely, when the azimuthal variations in boundary layer moist-entropy, inflow, and convection are weak in Phailin’s low-sheared environment, the inflow magnitude and radial location of boundary layer convergence relative to the radius of maximum wind dictated the rapid intensification.


2018 ◽  
Vol 31 (3) ◽  
pp. 1015-1028 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Guojun Gu

Abstract As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14. Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.


2010 ◽  
Vol 138 (6) ◽  
pp. 2058-2073 ◽  
Author(s):  
Augustin Colette ◽  
Nadja Leith ◽  
Vincent Daniel ◽  
Enrica Bellone ◽  
David S. Nolan

Abstract The decay of tropical cyclones after landfall is a key factor in estimating the extent of the hazard overland. Yet our current understanding of this decay is challenged by the low frequency of past events. Consequently, one cannot rely solely upon the historical record when attempting to quantify robustly the inland penetration of tropical cyclones. Thus, a framework designed to complement the historical record of landfalling storms by means of numerical modeling is introduced. Historical meteorological situations that could potentially have led to a landfall on the coast of the Gulf of Mexico are targeted and, using a bogus vortex technique in conjunction with a mesoscale model, a large number of landfalling hurricanes are simulated. The numerical ensemble constitutes a more comprehensive sample of possible landfalling hurricanes: it encompasses the range of events observed in the past but is not constrained to it. This allows us to revisit existing statistical models of the decay of tropical cyclones after landfall. A range of statistical models trained on the numerical ensemble of storms are evaluated on their ability to reproduce the inland decay of historical storms. These models have more skill at predicting tropical cyclone intensity over land than similar models trained exclusively on historical data.


Sign in / Sign up

Export Citation Format

Share Document