scholarly journals Evidence for accelerated aging in mammary epithelia of women carrying germline BRCA1 or BRCA2 mutations

Nature Aging ◽  
2021 ◽  
Vol 1 (9) ◽  
pp. 838-849 ◽  
Author(s):  
Sundus F. Shalabi ◽  
Masaru Miyano ◽  
Rosalyn W. Sayaman ◽  
Jennifer C. Lopez ◽  
Tiina A. Jokela ◽  
...  

AbstractDuring aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. In the present study, we show that histologically normal breast tissue from younger women who are susceptible to breast cancer, as a result of harboring a germline mutation in BRCA1, BRCA2 or PALB2 genes, exhibits hallmarks of accelerated aging. These include proportionately increased luminal epithelial cells that acquired myoepithelial markers, decreased proportions of myoepithelial cells and a basal differentiation bias or failure of differentiation of cKit+ progenitors. High-risk luminal and myoepithelial cells are transcriptionally enriched for genes of the opposite lineage, inflammatory- and cancer-related pathways. We have identified breast-aging hallmarks that reflect a convergent biology of cancer susceptibility, regardless of the specific underlying genetic or age-dependent risk or the associated breast cancer subtype.

2002 ◽  
Vol 115 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Thorarinn Gudjonsson ◽  
Lone Rønnov-Jessen ◽  
René Villadsen ◽  
Fritz Rank ◽  
Mina J. Bissell ◽  
...  

The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and β4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal.Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce α-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumor-associated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be recapitulated in culture and that one reason for the ability of myoepithelial cells to induce polarity is because they are the only source of laminin-1 in the breast in vivo. A further conclusion is that a majority of tumor-derived/-associated myoepithelial cells are deficient in their ability to impart polarity because they have lost their ability to synthesize sufficient or functional laminin-1. These results have important implications for the role of myoepithelial cells in maintenance of polarity in normal breast and how they may function as structural tumor suppressors.


2021 ◽  
Author(s):  
Natascia Marino ◽  
Rana German ◽  
Ram Podicheti ◽  
Douglas B. Rush ◽  
Pam Rockey ◽  
...  

ABSTRACTBackgroundGenome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N=146, median age=39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina’s HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation.ResultsTranscriptomic analysis identified 69 differentially expressed genes between women at either high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR<0.05 and fold change≥2. The majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR<0.01) and primary epithelial cells (p<0.05) from high-risk breasts. Moreover, 1698 DNA methylation aberrations were identified in high-risk breast tissues (FDR<0.05), partially overlapped with cancer-related signatures and correlated with transcriptional changes (p<0.05, r≤0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified.ConclusionsNormal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patrick D. Rädler ◽  
Barbara L. Wehde ◽  
Aleata A. Triplett ◽  
Hridaya Shrestha ◽  
Jonathan H. Shepherd ◽  
...  

AbstractClaudin-low breast cancer represents an aggressive molecular subtype that is comprised of mostly triple-negative mammary tumor cells that possess stem cell-like and mesenchymal features. Little is known about the cellular origin and oncogenic drivers that promote claudin-low breast cancer. In this study, we show that persistent oncogenic RAS signaling causes highly metastatic triple-negative mammary tumors in mice. More importantly, the activation of endogenous mutant KRAS and expression of exogenous KRAS specifically in luminal epithelial cells in a continuous and differentiation stage-independent manner induces preneoplastic lesions that evolve into basal-like and claudin-low mammary cancers. Further investigations demonstrate that the continuous signaling of oncogenic RAS, as well as regulators of EMT, play a crucial role in the cellular plasticity and maintenance of the mesenchymal and stem cell characteristics of claudin-low mammary cancer cells.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shoghag Panjarian ◽  
Jozef Madzo ◽  
Kelsey Keith ◽  
Carolyn M. Slater ◽  
Carmen Sapienza ◽  
...  

Abstract Background DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study, we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary dramatically from the population mean. Methods We generated whole-genome DNA methylation profiles (GSE160233) on purified epithelial cells and used publicly available Infinium HumanMethylation 450K array datasets (TCGA, GSE88883, GSE69914, GSE101961, and GSE74214) for discovery and validation. Results We found that hypermethylation in normal breast tissue is the best predictor of hypermethylation in cancer. Using unsupervised anomaly detection approaches, we found that about 10% of the individuals (39/427) were outliers for DNA methylation from 6 DNA methylation datasets. We also found that there were significantly more outlier samples in normal-adjacent to cancer (24/139, 17.3%) than in normal samples (15/228, 5.2%). Additionally, we found significant differences between the predicted ages based on DNA methylation and the chronological ages among outliers and not-outliers. Additionally, we found that accelerated outliers (older predicted age) were more frequent in normal-adjacent to cancer (14/17, 82%) compared to normal samples from individuals without cancer (3/17, 18%). Furthermore, in matched samples, we found that the epigenome of the outliers in the pre-malignant tissue was as severely altered as in cancer. Conclusions A subset of patients with breast cancer has severely altered epigenomes which are characterized by accelerated aging in their normal-appearing tissue. In the future, these DNA methylation sites should be studied further such as in cell-free DNA to determine their potential use as biomarkers for early detection of malignant transformation and preventive intervention in breast cancer.


Oncogene ◽  
2003 ◽  
Vol 22 (48) ◽  
pp. 7600-7606 ◽  
Author(s):  
Chunyan Zhao ◽  
Eric W-F Lam ◽  
Andrew Sunters ◽  
Eva Enmark ◽  
Manuela Tamburo De Bella ◽  
...  

2014 ◽  
Vol 21 (4) ◽  
pp. T183-T202 ◽  
Author(s):  
Gerard A Tarulli ◽  
Lisa M Butler ◽  
Wayne D Tilley ◽  
Theresa E Hickey

While it has been known for decades that androgen hormones influence normal breast development and breast carcinogenesis, the underlying mechanisms have only been recently elucidated. To date, most studies have focused on androgen action in breast cancer cell lines, yet these studies represent artificial systems that often do not faithfully replicate/recapitulate the cellular, molecular and hormonal environments of breast tumoursin vivo. It is critical to have a better understanding of how androgens act in the normal mammary gland as well as inin vivosystems that maintain a relevant tumour microenvironment to gain insights into the role of androgens in the modulation of breast cancer development. This in turn will facilitate application of androgen-modulation therapy in breast cancer. This is particularly relevant as current clinical trials focus on inhibiting androgen action as breast cancer therapy but, depending on the steroid receptor profile of the tumour, certain individuals may be better served by selectively stimulating androgen action. Androgen receptor (AR) protein is primarily expressed by the hormone-sensing compartment of normal breast epithelium, commonly referred to as oestrogen receptor alpha (ERa (ESR1))-positive breast epithelial cells, which also express progesterone receptors (PRs) and prolactin receptors and exert powerful developmental influences on adjacent breast epithelial cells. Recent lineage-tracing studies, particularly those focussed on NOTCH signalling, and genetic analysis of cancer risk in the normal breast highlight how signalling via the hormone-sensing compartment can influence normal breast development and breast cancer susceptibility. This provides an impetus to focus on the relationship between androgens, AR and NOTCH signalling and the crosstalk between ERa and PR signalling in the hormone-sensing component of breast epithelium in order to unravel the mechanisms behind the ability of androgens to modulate breast cancer initiation and growth.


Sign in / Sign up

Export Citation Format

Share Document