scholarly journals In vivo RNAi screen for tumor suppressor genes

2008 ◽  
Vol 1 (43) ◽  
pp. 1057-1057
2014 ◽  
Vol 52 (01) ◽  
Author(s):  
F Heinzmann ◽  
TW Kang ◽  
A Hohmeyer ◽  
P Schirmacher ◽  
R Geffers ◽  
...  

1992 ◽  
Vol 12 (3) ◽  
pp. 1387-1395
Author(s):  
M C Goyette ◽  
K Cho ◽  
C L Fasching ◽  
D B Levy ◽  
K W Kinzler ◽  
...  

Carcinogenesis is a multistage process that has been characterized both by the activation of cellular oncogenes and by the loss of function of tumor suppressor genes. Colorectal cancer has been associated with the activation of ras oncogenes and with the deletion of multiple chromosomal regions including chromosomes 5q, 17p, and 18q. Such chromosome loss is often suggestive of the deletion or loss of function of tumor suppressor genes. The candidate tumor suppressor genes from these regions are, respectively, MCC and/or APC, p53, and DCC. In order to further our understanding of the molecular and genetic mechanisms involved in tumor progression and, thereby, of normal cell growth, it is important to determine whether defects in one or more of these loci contribute functionally in the progression to malignancy in colorectal cancer and whether correction of any of these defects restores normal growth control in vitro and in vivo. To address this question, we have utilized the technique of microcell-mediated chromosome transfer to introduce normal human chromosomes 5, 17, and 18 individually into recipient colorectal cancer cells. Additionally, chromosome 15 was introduced into SW480 cells as an irrelevant control chromosome. While the introduction of chromosome 17 into the tumorigenic colorectal cell line SW480 yielded no viable clones, cell lines were established after the introduction of chromosomes 15, 5, and 18. Hybrids containing chromosome 18 are morphologically similar to the parental line, whereas those containing chromosome 5 are morphologically distinct from the parental cell line, being small, polygonal, and tightly packed. SW480-chromosome 5 hybrids are strongly suppressed for tumorigenicity, while SW480-chromosome 18 hybrids produce slowly growing tumors in some of the animals injected. Hybrids containing the introduced chromosome 18 but was significantly reduced in several of the tumor reconstitute cell lines. Introduction of chromosome 5 had little to no effect on responsiveness, whereas transfer ot chromosome 18 restored responsiveness to some degree. Our findings indicate that while multiple defects in tumor suppressor genes seem to be required for progression to the malignant state in colorectal cancer, correction of only a single defect can have significant effects in vivo and/or in vitro.


2000 ◽  
Vol 191 (1) ◽  
pp. 181-188 ◽  
Author(s):  
David A. Ingram ◽  
Feng-Chun Yang ◽  
Jeffrey B. Travers ◽  
Mary Jo Wenning ◽  
Kelly Hiatt ◽  
...  

Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's “two hit” model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1−/− murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W41 mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras–mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W41) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.


FEBS Letters ◽  
1999 ◽  
Vol 451 (3) ◽  
pp. 289-294 ◽  
Author(s):  
Jingfeng Li ◽  
Alexei I Protopopov ◽  
Rinat Z Gizatullin ◽  
Csaba Kiss ◽  
Vladimir I Kashuba ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11332
Author(s):  
Sandra Manzanero-Ortiz ◽  
Ana de Torres-Jurado ◽  
Rubí Hernández-Rojas ◽  
Ana Carmena

A connection between compromised asymmetric cell division (ACD) and tumorigenesis was proven some years ago using Drosophila larval brain neural stem cells, called neuroblasts (NBs), as a model system. Since then, we have learned that compromised ACD does not always promote tumorigenesis, as ACD is an extremely well-regulated process in which redundancy substantially overcomes potential ACD failures. Considering this, we have performed a pilot RNAi screen in Drosophila larval brain NB lineages using RasV12 scribble (scrib) mutant clones as a sensitized genetic background, in which ACD is affected but does not cause tumoral growth. First, as a proof of concept, we have tested known ACD regulators in this sensitized background, such as lethal (2) giant larvae and warts. Although the downregulation of these ACD modulators in NB clones does not induce tumorigenesis, their downregulation along with RasV12 scrib does cause tumor-like overgrowth. Based on these results, we have randomly screened 79 RNAi lines detecting 15 potential novel ACD regulators/tumor suppressor genes. We conclude that RasV12 scrib is a good sensitized genetic background in which to identify tumor suppressor genes involved in NB ACD, whose function could otherwise be masked by the high redundancy of the ACD process.


Cancer Cell ◽  
2009 ◽  
Vol 16 (4) ◽  
pp. 324-335 ◽  
Author(s):  
Anka Bric ◽  
Cornelius Miething ◽  
Carl Uli Bialucha ◽  
Claudio Scuoppo ◽  
Lars Zender ◽  
...  

1992 ◽  
Vol 12 (3) ◽  
pp. 1387-1395 ◽  
Author(s):  
M C Goyette ◽  
K Cho ◽  
C L Fasching ◽  
D B Levy ◽  
K W Kinzler ◽  
...  

Carcinogenesis is a multistage process that has been characterized both by the activation of cellular oncogenes and by the loss of function of tumor suppressor genes. Colorectal cancer has been associated with the activation of ras oncogenes and with the deletion of multiple chromosomal regions including chromosomes 5q, 17p, and 18q. Such chromosome loss is often suggestive of the deletion or loss of function of tumor suppressor genes. The candidate tumor suppressor genes from these regions are, respectively, MCC and/or APC, p53, and DCC. In order to further our understanding of the molecular and genetic mechanisms involved in tumor progression and, thereby, of normal cell growth, it is important to determine whether defects in one or more of these loci contribute functionally in the progression to malignancy in colorectal cancer and whether correction of any of these defects restores normal growth control in vitro and in vivo. To address this question, we have utilized the technique of microcell-mediated chromosome transfer to introduce normal human chromosomes 5, 17, and 18 individually into recipient colorectal cancer cells. Additionally, chromosome 15 was introduced into SW480 cells as an irrelevant control chromosome. While the introduction of chromosome 17 into the tumorigenic colorectal cell line SW480 yielded no viable clones, cell lines were established after the introduction of chromosomes 15, 5, and 18. Hybrids containing chromosome 18 are morphologically similar to the parental line, whereas those containing chromosome 5 are morphologically distinct from the parental cell line, being small, polygonal, and tightly packed. SW480-chromosome 5 hybrids are strongly suppressed for tumorigenicity, while SW480-chromosome 18 hybrids produce slowly growing tumors in some of the animals injected. Hybrids containing the introduced chromosome 18 but was significantly reduced in several of the tumor reconstitute cell lines. Introduction of chromosome 5 had little to no effect on responsiveness, whereas transfer ot chromosome 18 restored responsiveness to some degree. Our findings indicate that while multiple defects in tumor suppressor genes seem to be required for progression to the malignant state in colorectal cancer, correction of only a single defect can have significant effects in vivo and/or in vitro.


Sign in / Sign up

Export Citation Format

Share Document