scholarly journals High-coverage, single-cell genome and exome sequencing at base-pair resolution to aid biomarker identification

2014 ◽  
Vol 7 (33) ◽  
pp. 993-993
2018 ◽  
Author(s):  
Y. Yin ◽  
Y. Jiang ◽  
J. B. Berletch ◽  
C. M. Disteche ◽  
W. S. Noble ◽  
...  

AbstractWe developed “sci-LIANTI”, a high-throughput, high-coverage single-cell DNA sequencing method that combines single-cell combinatorial indexing (“sci”) and linear amplification via transposon insertion (“LIANTI”). To characterize rare chromosome mis-segregation events in male meiosis and their relationship to the landscape of meiotic crossovers, we applied sci-LIANTI to profile the genomes of 6,928 sperm and sperm precursors from infertile, interspecific F1 male mice. From 1,663 haploid and 292 diploid cells, we mapped 24,672 crossover events and identified genomic and epigenomic contexts that influence crossover hotness. Surprisingly, we observed frequent mitotic chromosome segregation during meiosis. Moreover, segregation during meiosis in individual cells was highly biased towards either mitotic or meiotic events. We anticipate that sci-LIANTI can be applied to fully characterize various recombination landscapes, as well as to other fields requiring high-throughput, high-coverage single-cell genome sequencing.One Sentence SummarySingle-cell genome sequencing maps crossover and non-meiotic chromosome segregation during spermatogenesis in interspecific hybrid mice.


2018 ◽  
Vol 6 (19) ◽  
pp. e00383-18 ◽  
Author(s):  
David K. Ngugi ◽  
Ulrich Stingl

ABSTRACT Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.


Author(s):  
S. Bhattacharya ◽  
J. Lillis ◽  
C. Baker ◽  
M. Guo ◽  
J.R. Myers ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Zachary C. Landry ◽  
Kevin Vergin ◽  
Christopher Mannenbach ◽  
Stephen Block ◽  
Qiao Yang ◽  
...  

2015 ◽  
Vol 81 (22) ◽  
pp. 7860-7868 ◽  
Author(s):  
Jacob H. Munson-McGee ◽  
Erin K. Field ◽  
Mary Bateson ◽  
Colleen Rooney ◽  
Ramunas Stepanauskas ◽  
...  

ABSTRACTNanoarchaeotaare obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence ofNanoarchaeotain high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposedNanobsidianus stetterifrom a more neutral YNP hot spring than to the marineNanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescencein situhybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNPNanoarchaeotaas aSulfolobalesspecies known to inhabit the hot springs. Furthermore, we demonstrate thatNanoarchaeotaare widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within oneNanoarchaeotasingle-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNPNanoarchaeota.


Sign in / Sign up

Export Citation Format

Share Document