The Production of Ammonia from the Nitrogen of Minerals

1885 ◽  
Vol 19 (486supp) ◽  
pp. 7757-7759
Author(s):  
George Beilby
2021 ◽  
Vol 9 (8) ◽  
pp. 1622
Author(s):  
Basanta Dhodary ◽  
Dieter Spiteller

Leaf-cutting ants live in mutualistic symbiosis with their garden fungus Leucoagaricus gongylophorus that can be attacked by the specialized pathogenic fungus Escovopsis. Actinomyces symbionts from Acromyrmex leaf-cutting ants contribute to protect L. gongylophorus against pathogens. The symbiont Streptomyces sp. Av25_4 exhibited strong activity against Escovopsis weberi in co-cultivation assays. Experiments physically separating E. weberi and Streptomyces sp. Av25_4 allowing only exchange of volatiles revealed that Streptomyces sp. Av25_4 produces a volatile antifungal. Volatile compounds from Streptomyces sp. Av25_4 were collected by closed loop stripping. Analysis by NMR revealed that Streptomyces sp. Av25_4 overproduces ammonia (up to 8 mM) which completely inhibited the growth of E. weberi due to its strong basic pH. Additionally, other symbionts from different Acromyrmex ants inhibited E. weberi by production of ammonia. The waste of ca. one third of Acomyrmex and Atta leaf-cutting ant colonies was strongly basic due to ammonia (up to ca. 8 mM) suggesting its role in nest hygiene. Not only complex and metabolically costly secondary metabolites, such as polyketides, but simple ammonia released by symbionts of leaf-cutting ants can contribute to control the growth of Escovopsis that is sensitive to ammonia in contrast to the garden fungus L. gongylophorus.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 974
Author(s):  
Bing Han ◽  
Haihong Meng ◽  
Fengyu Li ◽  
Jingxiang Zhao

Under the current double challenge of energy and the environment, an effective nitrogen reduction reaction (NRR) has become a very urgent need. However, the largest production of ammonia gas today is carried out by the Haber–Bosch process, which has many disadvantages, among which energy consumption and air pollution are typical. As the best alternative procedure, electrochemistry has received extensive attention. In this paper, a catalyst loaded with Fe3 clusters on the two-dimensional material C2N (Fe3@C2N) is proposed to achieve effective electrochemical NRR, and our first-principles calculations reveal that the stable Fe3@C2N exhibits excellent catalytic performance for electrochemical nitrogen fixation with a limiting potential of 0.57 eV, while also suppressing the major competing hydrogen evolution reaction. Our findings will open a new door for the development of non-precious single-cluster catalysts for effective nitrogen reduction reactions.


1969 ◽  
Vol 49 (2) ◽  
pp. 135-141 ◽  
Author(s):  
L. P. Milligan ◽  
A. R. Robblee ◽  
J. C. Wood ◽  
W. C. Kay ◽  
S. K. Chakrabartty

The preparation of a polymer of urea and furfural containing 23.2% nitrogen is described. This product was converted by rumen microorganisms in vitro to ammonia at a rate approximately one-seventh that of conversion of urea to ammonia. Use of the polymer as a dietary supplement in a feeding trial with lambs improved nitrogen retention over that of unsupplemented controls by 3.45 g of nitrogen retained per day, while an isonitrogenous quantity of supplemental urea improved nitrogen retention by 0.51 g of nitrogen retained per day. The blood urea pattern, throughout the day, of lambs adapted to control, urea-supplemented and urea–furfural polymer-supplemented rations indicated a slow, prolonged production of ammonia from the latter supplement and very rapid, short-term degradation of urea in vivo.


Nature Energy ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 1067-1075 ◽  
Author(s):  
Wenbo Gao ◽  
Jianping Guo ◽  
Peikun Wang ◽  
Qianru Wang ◽  
Fei Chang ◽  
...  

1924 ◽  
Vol 18 (3-4) ◽  
pp. 486-497 ◽  
Author(s):  
Robert Alexander McCance

mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Teresa Cruz-Bustos ◽  
Evgeniy Potapenko ◽  
Melissa Storey ◽  
Roberto Docampo

Trypanosoma cruzi is an important human and animal pathogen and the etiologic agent of Chagas disease. The parasite undergoes drastic changes in its metabolism during its life cycle. Amino acid consumption becomes important in the infective stages and leads to the production of ammonia (NH3), which needs to be detoxified. We report here the identification of an ammonium (NH4 +) transporter that localizes to acidic compartments and is important for replication, differentiation, and resistance to starvation and osmotic stress.


Sign in / Sign up

Export Citation Format

Share Document