scholarly journals Signal transduction pathways that regulate cell survival and cell death

Oncogene ◽  
1998 ◽  
Vol 17 (25) ◽  
pp. 3207-3213 ◽  
Author(s):  
Tomislav Dragovich ◽  
Charles M Rudin ◽  
Craig B Thompson
2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


2020 ◽  
Vol 26 (S2) ◽  
pp. 1354-1358
Author(s):  
James Wachira

AbstractCAD cells are neuronal cells used in studies of cell differentiation and in cellular models of neuropathology. When cultured in differentiation medium, CAD cells exhibit characteristics of mature neurons including the generation of action potential. In addition to being a central signaling kinase in cell survival, AKT1 plays important roles in the nervous system including neuroplasticity and this study examined the localization of exogenous AKT1 in CAD cells. Neuropeptides modulate many signal transduction pathways and melacortins are implicated in regulating growth factor signal transduction pathways, including the PI3K/AKT pathway. AKT1-DsReD was transfected into CAD cells that were stably expressing melanocortin 3-receptor-GFP (MC3R-GFP), a G-protein coupled receptor. The cells were imaged with confocal microscopy to determine the fluorescent protein localization patterns. AKT1-DsRed was predominantly localized in the cytoplasm and the nucleus. Further, expression of exogenous AKT1 in these cell lines led to morphological changes reminiscent of apoptosis. As expected, MC3R-GFP localized to the plasma membrane but it internalized upon cell stimulation with the cognate ligand. In limited areas of the plasma membrane, AKT1-DsRed and MC3R-GFP were colocalized. In conclusion, quantitative studies to understand the role of relative levels of AKT1 in determining cell survival are needed.


Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1214-1221 ◽  
Author(s):  
Thomas Powles ◽  
Robert te Poele ◽  
Jonathan Shamash ◽  
Tracy Chaplin ◽  
David Propper ◽  
...  

Abstract Δ9-Tetrahydrocannabinol (THC) is the active metabolite of cannabis. THC causes cell death in vitro through the activation of complex signal transduction pathways. However, the role that the cannabinoid 1 and 2 receptors (CB1-R and CB2-R) play in this process is less clear. We therefore investigated the role of the CB-Rs in mediating apoptosis in 3 leukemic cell lines and performed microarray and immunoblot analyses to establish further the mechanism of cell death. We developed a novel flow cytometric technique of measuring the expression of functional receptors and used combinations of selective CB1-R and CB2-R antagonists and agonists to determine their individual roles in this process. We have shown that THC is a potent inducer of apoptosis, even at 1 × IC50 (inhibitory concentration 50%) concentrations and as early as 6 hours after exposure to the drug. These effects were seen in leukemic cell lines (CEM, HEL-92, and HL60) as well as in peripheral blood mononuclear cells. Additionally, THC did not appear to act synergistically with cytotoxic agents such as cisplatin. One of the most intriguing findings was that THC-induced cell death was preceded by significant changes in the expression of genes involved in the mitogen-activated protein kinase (MAPK) signal transduction pathways. Both apoptosis and gene expression changes were altered independent of p53 and the CB-Rs.


2018 ◽  
Vol 4 (12) ◽  
pp. 1746-1754 ◽  
Author(s):  
Stella Hartmann ◽  
David J. Nusbaum ◽  
Kevin Kim ◽  
Saleem Alameh ◽  
Chi-Lee C. Ho ◽  
...  

2009 ◽  
Vol 1249 ◽  
pp. 244-250 ◽  
Author(s):  
Hyoung-gon Lee ◽  
Xiongwei Zhu ◽  
Gemma Casadesus ◽  
Mercé Pallàs ◽  
Antoni Camins ◽  
...  

2002 ◽  
Vol 22 (5) ◽  
pp. 503-514 ◽  
Author(s):  
Zhao Zhong Chong ◽  
Jing-Qiong Kang ◽  
Kenneth Maiese

In addition to promoting the survival, proliferation, and differentiation of immature erythroid cells, erythropoietin and the erythropoietin receptor have recently been shown to modulate cellular signal transduction pathways that extend beyond the erythropoietic function of erythropoietin. In particular, erythropoietin has been linked to the prevention of programmed cell death in neuronal systems. Although this work is intriguing, the underlying molecular mechanisms that serve to mediate neuroprotection by erythropoietin are not well understood. Further analysis illustrates that erythropoietin modulates two distinct components of programmed cell death that involve the degradation of DNA and the externalization of cellular membrane phosphatidylserine residues. Initiation of the cascades that modulate protection by erythropoietin and its receptor may begin with the activation of the Janus tyrosine kinase 2 protein. Subsequent downstream mechanisms appear to lead to the activation of multiple signal transduction pathways that include transcription factor STAT5 (signal transducers and activators of transcription), Bcl-2, protein kinase B, cysteine proteases, mitogen-activated protein kinases, proteintyrosine phosphatases, and nuclear factor-κB. New knowledge of the cellular pathways regulated by erythropoietin in neuronal environments will potentially solidify the development and initiation of therapeutic strategies against nervous system disorders.


Sign in / Sign up

Export Citation Format

Share Document