scholarly journals Cell-cell adhesion-mediated tyrosine phosphorylation of nectin-2δ, an immunoglobulin-like cell adhesion molecule at adherens junctions

Oncogene ◽  
2000 ◽  
Vol 19 (35) ◽  
pp. 4022-4028 ◽  
Author(s):  
Mitsuhiro Kikyo ◽  
Takashi Matozaki ◽  
Atsuko Kodama ◽  
Hiroshi Kawabe ◽  
Hiroyuki Nakanishi ◽  
...  
2003 ◽  
Vol 14 (4) ◽  
pp. 1597-1609 ◽  
Author(s):  
Yoshinari Tanaka ◽  
Hiroyuki Nakanishi ◽  
Shigeki Kakunaga ◽  
Noriko Okabe ◽  
Tomomi Kawakatsu ◽  
...  

E-Cadherin is a Ca2+-dependent cell-cell adhesion molecule at adherens junctions (AJs) of epithelial cells. A fragment of N-cadherin lacking its extracellular region serves as a dominant negative mutant (DN) and inhibits cell-cell adhesion activity of E-cadherin, but its mode of action remains to be elucidated. Nectin is a Ca2+-independent immunoglobulin-like cell-cell adhesion molecule at AJs and is associated with E-cadherin through their respective peripheral membrane proteins, afadin and catenins, which connect nectin and cadherin to the actin cytoskeleton, respectively. We showed here that overexpression of nectin capable of binding afadin, but not a mutant incapable of binding afadin, reduced the inhibitory effect of N-cadherin DN on the cell-cell adhesion activity of E-cadherin in keratinocytes. Overexpressed nectin recruited N-cadherin DN to the nectin-based cell-cell adhesion sites in an afadin-dependent manner. Moreover, overexpression of nectin enhanced the E-cadherin–based cell-cell adhesion activity. These results suggest that N-cadherin DN competitively inhibits the association of the endogenous nectin-afadin system with the endogenous E-cadherin-catenin system and thereby reduces the cell-cell adhesion activity of E-cadherin. Thus, nectin plays a role in the formation of E-cadherin–based AJs in keratinocytes.


1999 ◽  
Vol 145 (3) ◽  
pp. 539-549 ◽  
Author(s):  
Kenichi Takahashi ◽  
Hiroyuki Nakanishi ◽  
Masako Miyahara ◽  
Kenji Mandai ◽  
Keiko Satoh ◽  
...  

We have isolated a novel actin filament–binding protein, named afadin, localized at cadherin-based cell–cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament–binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor–related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell–cell AJs in various tissues and cell lines. In E-cadherin–expressing EL cells, PRR was recruited to cadherin-based cell–cell AJs through interaction with afadin. PRR showed Ca2+-independent cell–cell adhesion activity. These results indicate that PRR is a cell–cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell–cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word “necto” meaning “to connect”).


2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

1999 ◽  
Vol 112 (12) ◽  
pp. 1915-1923 ◽  
Author(s):  
P.L. Hordijk ◽  
E. Anthony ◽  
F.P. Mul ◽  
R. Rientsma ◽  
L.C. Oomen ◽  
...  

Vascular endothelial (VE)-cadherin is the endothelium-specific member of the cadherin family of homotypic cell adhesion molecules. VE-cadherin, but not the cell adhesion molecule platelet/endothelial cell adhesion molecule (PECAM-1), markedly colocalizes with actin stress fibers at cell-cell junctions between human umbilical vein endothelial cells. Inhibition of VE-cadherin-mediated, but not PECAM-1-mediated, adhesion induced reorganization of the actin cytoskeleton, loss of junctional VE-cadherin staining and loss of cell-cell adhesion. In functional assays, inhibition of VE-cadherin caused increased monolayer permeability and enhanced neutrophil transendothelial migration. In a complementary set of experiments, modulation of the actin cytoskeleton was found to strongly affect VE-cadherin distribution. Brief stimulation of the beta2-adrenergic receptor with isoproterenol induced a loss of actin stress fibers resulting in a linear, rather than ‘jagged’, VE-cadherin distribution. The concomitant, isoproterenol-induced, reduction in monolayer permeability was alleviated by a VE-cadherin-blocking antibody. Finally, cytoskeletal reorganization resulting from the inactivation of p21Rho caused a diffuse localization of VE-cadherin, which was accompanied by reduced cell-cell adhesion. Together, these data show that monolayer permeability and neutrophil transendothelial migration are modulated by VE-cadherin-mediated cell-cell adhesion, which is in turn controlled by the dynamics of the actin cytoskeleton.


2000 ◽  
Vol 115 (6) ◽  
pp. 1047-1053 ◽  
Author(s):  
Margarete Schön ◽  
Viktor Hogenkamp ◽  
B. Gregor Wienrich ◽  
Michael P. Schön ◽  
C. Eberhard Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document