scholarly journals The Role of Scleraxis in Fate Determination of Mesenchymal Stem Cells for Tenocyte Differentiation

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yonghui Li ◽  
Melissa Ramcharan ◽  
Zuping Zhou ◽  
Daniel J. Leong ◽  
Takintope Akinbiyi ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are pluripotent cells that primarily differentiate into osteocytes, chondrocytes and adipocytes. Recent studies indicate that MSCs can also be induced to generate tenocyte-like cells; moreover, MSCs have been suggested to have great therapeutic potential for tendon pathologies. Yet the precise molecular cascades governing tenogenic differentiation of MSCs remain unclear. We demonstrate scleraxis, a transcription factor critically involved in embryonic tendon development and formation, plays a pivotal role in the fate determination of MSC towards tenocyte differentiation. Using murine C3H10T1/2 pluripotent stem cells as a model system, we show scleraxis is extensively expressed in the early phase of bone morphogenetic protein (BMP)-12-triggered tenocytic differentiation. Once induced, scleraxis directly transactivates tendon lineage-related genes such as tenomodulin and suppresses osteogenic, chondrogenic and adipogenic capabilities, thus committing C3H10T1/2 cells to differentiate into the specific tenocyte-like lineage, while eliminating plasticity for other lineages. We also reveal that mechanical loading-mediated tenocytic differentiation follows a similar pathway and that BMP-12 and cyclic uniaxial strain act in an additive fashion to augment the maximal response by activating signal transducer Smad8. These results provide critical insights into the determination of multipotent stem cells to the tenocyte lineage induced by both chemical and physical signals.

2020 ◽  
Vol 12 (8) ◽  
pp. 776-786
Author(s):  
Xiao-Dan Chen ◽  
Jia-Li Tan ◽  
Yi Feng ◽  
Li-Jia Huang ◽  
Mei Zhang ◽  
...  

Author(s):  
Lin Ren ◽  
Xiaodan Chen ◽  
Xiaobing Chen ◽  
Jiayan Li ◽  
Bin Cheng ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yonghui Li ◽  
Melissa Ramcharan ◽  
Zuping Zhou ◽  
Daniel J. Leong ◽  
Takintope Akinbiyi ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (64) ◽  
pp. 37300-37311 ◽  
Author(s):  
Zixiang Wu ◽  
Shujing Liang ◽  
Wenyu Kuai ◽  
Lifang Hu ◽  
Airong Qian

The recent advances of miRNAs and lncRNAs in determining the cell fate of MSCs.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
R. A. Contreras ◽  
F. E. Figueroa ◽  
F. Djouad ◽  
P. Luz-Crawford

Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to immunomodulate cells from both the innate and the adaptive immune systems promoting an anti-inflammatory environment. During the last decade, MSCs have been intensively studiedin vitroandin vivoin experimental animal model of autoimmune and inflammatory disorders. Based on these studies, MSCs are currently widely used for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) characterized by complex deregulation of the immune systems. However, the therapeutic properties of MSCs in arthritis are still controverted. These controversies might be due to the diversity of MSC sources and isolation protocols used, the time, the route and dose of MSC administration, the variety of the mechanisms involved in the MSCs suppressive effects, and the complexity of arthritis pathogenesis. In this review, we discuss the role of the interactions between MSCs and the different immune cells associated with arthritis pathogenesis and the possible means described in the literature that could enhance MSCs therapeutic potential counteracting arthritis development and progression.


Author(s):  
Ahmed Elhussieny ◽  
Ken’ichiro Nogami ◽  
Fusako Sakai-Takemura ◽  
Yusuke Maruyama ◽  
AbdElraouf Omar Abdelbakey ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from both foetal and adult tissues. Several groups demonstrated that transplantation of MSCs promoted the regeneration of skeletal muscle and ameliorated muscular dystrophy in animal models. Mesenchymal stem cells in skeletal muscle, also known as fibro-adipogenic progenitors (FAPs), are essential for the maintenance of skeletal muscle. Importantly, they contribute to fibrosis and fat accumulation in dystrophic muscle. Therefore, MSCs in muscle are a pharmacological target for the treatment of muscular dystrophies. In this chapter, we briefly update the knowledge on mesenchymal stem/progenitor cells and discuss their therapeutic potential as a regenerative medicine treatment of Duchenne muscular dystrophy.


2020 ◽  
Vol 29 ◽  
pp. 096368972090850 ◽  
Author(s):  
Bocheng Zhang ◽  
Xiaoyuan Tian ◽  
Jun Hao ◽  
Gang Xu ◽  
Weiguo Zhang

Mesenchymal stem cells (MSCs) are multipotent stem cells that have attracted increasing interest in the field of regenerative medicine. Previously, the differentiation ability of MSCs was believed to be primarily responsible for tissue repair. Recent studies have shown that paracrine mechanisms play an important role in this process. MSCs can secrete soluble molecules and extracellular vesicles (EVs), which mediate paracrine communication. EVs contain large amounts of proteins and nucleic acids, such as mRNAs and microRNAs (miRNAs), and can transfer the cargo between cells. The cargoes are similar to those in MSCs and are not susceptible to degradation due to the protection of the EV bimolecular membrane structure. MSC-EVs can mimic the biological characteristics of MSCs, such as differentiation, maturation, and self-renewal. Due to their broad biological functions and their ability to transfer molecules between cells, EVs have been intensively studied by an increasing number of researchers with a focus on therapeutic applications, especially those of EVs secreted by MSCs. In this review, we discuss MSC-derived EVs and their therapeutic potential in tissue regeneration.


2020 ◽  
Vol 11 ◽  
pp. 204173142091933 ◽  
Author(s):  
Tom Hodgkinson ◽  
Francis Wignall ◽  
Judith A Hoyland ◽  
Stephen M Richardson

Stem cell–based regenerative strategies are promising for intervertebral disc degeneration. Stimulation of bone-marrow- and adipose-derived multipotent stem cells with recombinant human growth differentiation factor 6 (rhGDF6) promotes anabolic nucleus pulposus like phenotypes. In comparison to mesenchymal stem cells, adipose-derived multipotent stem cells exhibit greater NP-marker gene expression and proteoglycan-rich matrix production. To understand these response differences, we investigated bone morphogenetic protein receptor profiles in donor-matched human mesenchymal stem cells and adipose-derived multipotent stem cells, determined differences in rhGDF6 signalling and their importance in NP-like differentiation between cell populations. Bone morphogenetic protein receptor expression in mesenchymal stem cells and adipose-derived multipotent stem cells revealed elevated and less variable expression of BMPR2 in adipose-derived multipotent stem cells, which corresponded with increased downstream pathway activation (SMAD1/5/8, ERK1/2). Inhibitor studies demonstrated SMAD1/5/8 signalling was required for rhGDF6-induced nucleus-pulposus-like adipose-derived multipotent stem cell differentiation, while ERK1/2 contributed significantly to critical nucleus pulposus gene expression, aggrecan and type II collagen production. These data inform cell regenerative therapeutic choices for intervertebral disc degeneration regeneration and identify further potential optimisation targets.


Sign in / Sign up

Export Citation Format

Share Document