scholarly journals Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Xing Chen
2014 ◽  
Vol 10 (8) ◽  
pp. 2074-2081 ◽  
Author(s):  
Jie Sun ◽  
Hongbo Shi ◽  
Zhenzhen Wang ◽  
Changjian Zhang ◽  
Lin Liu ◽  
...  

Accumulating evidence demonstrates that long non-coding RNAs (lncRNAs) play important roles in the development of complex human diseases. Predicting novel human lncRNA–disease associations is a challenging and essential task.


2018 ◽  
Vol 19 (11) ◽  
pp. 3410 ◽  
Author(s):  
Xiujuan Lei ◽  
Zengqiang Fang ◽  
Luonan Chen ◽  
Fang-Xiang Wu

CircRNAs have particular biological structure and have proven to play important roles in diseases. It is time-consuming and costly to identify circRNA-disease associations by biological experiments. Therefore, it is appealing to develop computational methods for predicting circRNA-disease associations. In this study, we propose a new computational path weighted method for predicting circRNA-disease associations. Firstly, we calculate the functional similarity scores of diseases based on disease-related gene annotations and the semantic similarity scores of circRNAs based on circRNA-related gene ontology, respectively. To address missing similarity scores of diseases and circRNAs, we calculate the Gaussian Interaction Profile (GIP) kernel similarity scores for diseases and circRNAs, respectively, based on the circRNA-disease associations downloaded from circR2Disease database (http://bioinfo.snnu.edu.cn/CircR2Disease/). Then, we integrate disease functional similarity scores and circRNA semantic similarity scores with their related GIP kernel similarity scores to construct a heterogeneous network made up of three sub-networks: disease similarity network, circRNA similarity network and circRNA-disease association network. Finally, we compute an association score for each circRNA-disease pair based on paths connecting them in the heterogeneous network to determine whether this circRNA-disease pair is associated. We adopt leave one out cross validation (LOOCV) and five-fold cross validations to evaluate the performance of our proposed method. In addition, three common diseases, Breast Cancer, Gastric Cancer and Colorectal Cancer, are used for case studies. Experimental results illustrate the reliability and usefulness of our computational method in terms of different validation measures, which indicates PWCDA can effectively predict potential circRNA-disease associations.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Xing Chen ◽  
Chenggang Clarence Yan ◽  
Cai Luo ◽  
Wen Ji ◽  
Yongdong Zhang ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yahui Long ◽  
Jiawei Luo

Abstract Background An increasing number of biological and clinical evidences have indicated that the microorganisms significantly get involved in the pathological mechanism of extensive varieties of complex human diseases. Inferring potential related microbes for diseases can not only promote disease prevention, diagnosis and treatment, but also provide valuable information for drug development. Considering that experimental methods are expensive and time-consuming, developing computational methods is an alternative choice. However, most of existing methods are biased towards well-characterized diseases and microbes. Furthermore, existing computational methods are limited in predicting potential microbes for new diseases. Results Here, we developed a novel computational model to predict potential human microbe-disease associations (MDAs) based on Weighted Meta-Graph (WMGHMDA). We first constructed a heterogeneous information network (HIN) by combining the integrated microbe similarity network, the integrated disease similarity network and the known microbe-disease bipartite network. And then, we implemented iteratively pre-designed Weighted Meta-Graph search algorithm on the HIN to uncover possible microbe-disease pairs by cumulating the contribution values of weighted meta-graphs to the pairs as their probability scores. Depending on contribution potential, we described the contribution degree of different types of meta-graphs to a microbe-disease pair with bias rating. Meta-graph with higher bias rating will be assigned greater weight value when calculating probability scores. Conclusions The experimental results showed that WMGHMDA outperformed some state-of-the-art methods with average AUCs of 0.9288, 0.9068 ±0.0031 in global leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. In the case studies, 9, 19, 37 and 10, 20, 45 out of top-10, 20, 50 candidate microbes were manually verified by previous reports for asthma and inflammatory bowel disease (IBD), respectively. Furthermore, three common human diseases (Crohn’s disease, Liver cirrhosis, Type 1 diabetes) were adopted to demonstrate that WMGHMDA could be efficiently applied to make predictions for new diseases. In summary, WMGHMDA has a high potential in predicting microbe-disease associations.


2019 ◽  
Vol 7 (2) ◽  
pp. 138-146
Author(s):  
Tao Ding ◽  
Jie Gao ◽  
Shanshan Zhu ◽  
Junhua Xu ◽  
Min Wu

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Liugen Wang ◽  
Min Shang ◽  
Qi Dai ◽  
Ping-an He

Abstract Background More and more evidence showed that long non-coding RNAs (lncRNAs) play important roles in the development and progression of human sophisticated diseases. Therefore, predicting human lncRNA-disease associations is a challenging and urgently task in bioinformatics to research of human sophisticated diseases. Results In the work, a global network-based computational framework called as LRWRHLDA were proposed which is a universal network-based method. Firstly, four isomorphic networks include lncRNA similarity network, disease similarity network, gene similarity network and miRNA similarity network were constructed. And then, six heterogeneous networks include known lncRNA-disease, lncRNA-gene, lncRNA-miRNA, disease-gene, disease-miRNA, and gene-miRNA associations network were applied to design a multi-layer network. Finally, the Laplace normalized random walk with restart algorithm in this global network is suggested to predict the relationship between lncRNAs and diseases. Conclusions The ten-fold cross validation is used to evaluate the performance of LRWRHLDA. As a result, LRWRHLDA achieves an AUC of 0.98402, which is higher than other compared methods. Furthermore, LRWRHLDA can predict isolated disease-related lnRNA (isolated lnRNA related disease). The results for colorectal cancer, lung adenocarcinoma, stomach cancer and breast cancer have been verified by other researches. The case studies indicated that our method is effective.


2020 ◽  
Vol 15 ◽  
Author(s):  
Xinguo Lu ◽  
Yan Gao ◽  
Zhenghao Zhu ◽  
Li Ding ◽  
Xinyu Wang ◽  
...  

: MicroRNA is a type of non-coding RNA molecule whose length is about 22 nucleotides. The growing evidence shows that microRNA makes critical regulations in the development of complex diseases, such as cancers, cardiovascular diseases. Predicting potential microRNA-disease associations can provide a new perspective to achieve a better scheme of disease diagnosis and prognosis. However, there is a challenge to predict some potential essential microRNAs only with few known associations. To tackle this, we propose a novel method, named as constrained strategy for predicting microRNA-disease associations called CPMDA, in heterogeneous omics data. Here, we firstly construct disease similarity network and microRNA similarity network to preprocess the microRNAs with none available associations. Then, we apply probabilistic factorization to obtain two feature matrices of microRNA and disease. Meanwhile, we formulate a similarity feature matrix as constraints in the factorization process. Finally, we utilize obtained feature matrixes to identify potential associations for all diseases. The results indicate that CPMDA is superior over other methods in predicting potential microRNA-disease associations. Moreover, the evaluation show that CPMDA has a strong effect on microRNAs with few known associations. In case studies, CPMDA also demonstrated the effectiveness to infer unknown microRNAdisease associations for those novel diseases and microRNAs.


2019 ◽  
Vol 13 (10) ◽  
pp. 2259-2277 ◽  
Author(s):  
Jieyi Di ◽  
Baotong Zheng ◽  
Qingfei Kong ◽  
Ying Jiang ◽  
Siyao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document