scholarly journals Small RNA-mediated responses to low- and high-temperature stresses in cotton

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qiongshan Wang ◽  
Nian Liu ◽  
Xiyan Yang ◽  
Lili Tu ◽  
Xianlong Zhang
2009 ◽  
Vol 34 (12) ◽  
pp. 2196-2201 ◽  
Author(s):  
Xue-Li QI ◽  
Lin HU ◽  
Hai-Bin DONG ◽  
Lei ZHANG ◽  
Gen-Song WANG ◽  
...  

2021 ◽  
Author(s):  
Peng Zhu ◽  
Jennifer Burney

Abstract. Irrigation has important implications for sustaining global food production, enabling crop water demand to be met even under dry conditions. Added water also cools crop plants through transpiration; irrigation might thus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we use satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Our study shows that, unlike air temperature metrics, satellite-derived LST detects significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling is likely to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. The analysis also suggests that irrigation not only reduces water and temperature stress but also weakens the response of yield to these stresses. Specifically, temperature stress is significantly weakened for reproductive processes in irrigated crops. The attribution analysis further suggests that water and high temperature stress alleviation contributes to 65 % and 35 % of yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, untangling irrigation effects on both heat and water stress mitigation has important implications for designing agricultural adaptation strategies under climate change.


2021 ◽  
Author(s):  
Li Ren ◽  
Yi-Ping Hou ◽  
Yuanye Zhu ◽  
Fei-Fei Zhao ◽  
Yabing Duan ◽  
...  

Trehalase is considered the main target of the biological fungicide validamycin A, and toxicology mechanism of validamycin A is unknown. 14-3-3 proteins, highly conserved proteins, participate in diverse cellular processes, including enzyme activation, protein localization and molecular chaperone. In Saccharomyces cerevisiae, the 14-3-3 protein Bmh1could interact with Nth1 to respond specific external stimuli. Here, we characterized FgNth, FgBmh1, and FgBmh2 in Fusarium graminearum. ΔFgNth, ΔFgBmh1, and ΔFgBmh2 displayed great growth defects when compared to wild-type PH-1. When exposed to validamycin A, high osmotic and high temperature stresses, ΔFgNth, ΔFgBmh1, and ΔFgBmh2 showed more tolerance than WT. Both ΔFgNth and ΔFgBmh1 displayed reduced deoxynivalenol (DON) production but opposite for ΔFgBmh2, and all three deletion mutants showed reduced virulence on wheat coleoptiles. In addition, Co-immunoprecipitation (Co-IP) experiments suggested that FgBmh1 and FgBmh2 both interact with FgNth, but no interaction was detected between FgBmh1 and FgBmh2 in our experiments. Further, validamycin A enhances the interaction between FgBmh1 and FgNth in a positive correlation under concentrations of 1-100μg/mL. Besides, both high osmotic and high temperature stresses promote the interaction between FgBmh1 and FgNth. Co-IP assay also showed that neither FgBmh1 nor FgBmh2 could interact with FgPbs2, a MAPKK kinase in the high-osmolarity glycerol (HOG) pathway. However, FgBmh2 but not FgBmh1 binds to the heat shock protein FgHsp70 in F. graminearum. Taken together, our results demonstrate that FgNth and FgBmhs are involved in growth, responces to external stresses and virulence, and validamycin A enhanced the interaction between FgNth and FgBmh1in F. graminearum.


2011 ◽  
Vol 9 (1) ◽  
pp. 39 ◽  
Author(s):  
Pavinee Kurdrid ◽  
Jittisak Senachak ◽  
Matura Sirijuntarut ◽  
Rayakorn Yutthanasirikul ◽  
Phuttawadee Phuengcharoen ◽  
...  

2013 ◽  
Vol 19 (A) ◽  
pp. 37 ◽  
Author(s):  
Vesselin Baev ◽  
Ivan Milev ◽  
Mladen Naydenov ◽  
Tihomir Vachev ◽  
Elena Apostolova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document