The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China

Author(s):  
E. Li ◽  
Jin Zhao ◽  
Johannes W.M. Pullens ◽  
Xiaoguang Yang
2009 ◽  
Vol 34 (12) ◽  
pp. 2196-2201 ◽  
Author(s):  
Xue-Li QI ◽  
Lin HU ◽  
Hai-Bin DONG ◽  
Lei ZHANG ◽  
Gen-Song WANG ◽  
...  

2012 ◽  
Vol 39 (3) ◽  
pp. 190 ◽  
Author(s):  
Gautam P. Pradhan ◽  
P. V. Vara Prasad ◽  
Allan K. Fritz ◽  
Mary B. Kirkham ◽  
Bikram S. Gill

Drought and high temperature often occurs simultaneously, causing significant yield losses in wheat (Triticum aestivum L.). The objectives of this study were to: (i) quantify independent and combined effects of drought and high temperature stress on synthetic hexaploid wheat genotypes at anthesis and at 21 days after anthesis; and (ii) determine whether responses to stress varied among genotypes. Four synthetic hexaploid and two spring wheat genotypes were grown from emergence to anthesis (Experiment I) and emergence to 21 days after anthesis (Experiment II), with full irrigation and 21/15°C day/night temperature. Thereafter, four treatments were imposed for 16 days as (a) optimum condition: irrigation + 21/15°C, (b) drought stress: withhold irrigation + 21/15°C, (c) high temperature stress: irrigation + 36/30°C and (d) combined stress: withhold irrigation + 36/30°C. Results indicated a decrease in leaf chlorophyll, individual grain weight and grain yield in an increasing magnitude of drought < high temperature < combined stress. There were 69, 81 and 92% grain yield decreases in Experiment I and 26, 37 and 50% in Experiment II under drought, high temperature and combined stress respectively. Synthetic hexaploid wheat genotypes varied in their response to stresses. Genotypes ALTAR 84/AO’S’ and ALTAR 84/Aegilops tauschii Coss. (WX 193) were least affected by combined stress in Experiments I and II respectively. Overall, combined effect of drought + high temperature stress was more detrimental than the individual stress and the interaction effect was hypo-additive in nature.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 939
Author(s):  
Qiang Chen ◽  
Xingyi Zhang ◽  
Li Sun ◽  
Jianhua Ren ◽  
Yaru Yuan ◽  
...  

Tillage practices are critical for sustaining soil quality necessary for successful crop growth and productivity, but there are only few studies for strip tillage (ST) in the Mollisols region of Northeast China at present. A long-term (≥10-year) study was carried out to investigate the influence of within the tilled row (IR) and between rows (BR) in ST (10-year), conventional tillage (CT, 14-year) and no tillage (NT, 14-year) treatments on soil physicochemical properties. Soil samples were taken in May of 2019 at 0–5, 5–10, 10–20 and 20–30 cm depths and used to analyze bulk density (BD), soil aggregate distribution and stability, and soil organic carbon (SOC). Meanwhile, our study also explored the differences in seed emergence, soil moisture, and temperature during the seed emergence period, and yield of maize (Zea mays L.) among the different treatments. Similar soil properties were observed between ST-BR and NT, which showed they had a significantly greater BD, >0.25 mm water stable aggregate content (WR0.25) (especially in the amount of >2 mm and 1–2 mm size proportion), aggregate stability, and SOC than ST-IR and CT-IR at a depth of 0–20 cm. By improving soil conditions of seedbed, ST-IR and CT-IR increased soil temperature above NT by 1.64 °C and 1.80 °C, respectively, and ST-IR had a slight greater soil moisture than CT-IR in the top 10 cm layer during the seed emergence period. Late maize seed emergence was observed NT in than ST-IR and CT-IR and the average annual yields in ST were slightly greater than NT and CT, but the differences were not significant. Our results also showed that CT-BR had a poor soil structure and lower SOC than other treatments at 0–30 cm depth. We conclude from these long-term experimental results that ST could improve soil water-heat conditions to promote seed germination, maintain soil structure, and increase the maize yield and it should be applied in the Mollisols region of Northeast China.


2017 ◽  
Vol 63 (No. 11) ◽  
pp. 498-504 ◽  
Author(s):  
Jiang Wenting ◽  
Liu Xiaohu ◽  
Qi Wen ◽  
Xu Xiaonan ◽  
Zhu Yucui

Accurate estimating of the balanced nutrition for maize is necessary for optimizing fertilizer management to prevent nutrient supply surplus or deficiency. Data from 300 field experiments in the Northeast China conducted between 2006 and 2011 were gathered to study the characteristics of maize yield, and using the QUEFTS model to estimate the balanced nutrition at different yield potential. The average grain yield was 10 427 kg/ha, and average internal efficiencies were 54.3, 251.5 and 78.2 kg grain per kg plant nitrogen (N), phosphorus (P) and potassium (K), respectively. With the harvest index values &lt; 0.40 as outliers were excluded, the model simulated a linear-parabolic-plateau curve for the balanced N, P and K uptake when the initial yield target increased to the yield potential levels of 10 000 to 14 000 kg/ha. When the yield target reached approximately 60–70% of the yield potential, 16.7 kg N, 3.8 kg P, and 11.4 kg K were required to produce 1000 kg grain. The corresponding internal efficiencies were 60.0, 265.7 and 88.0 kg grain per kg plant N, P and K, respectively. These results contributed to improving nutrient use efficiency, and to demonstrate that the QUEFTS model could be a promising approach for estimating the balanced nutrition.


2020 ◽  
Vol 259 ◽  
pp. 108795 ◽  
Author(s):  
Shanshan Gao ◽  
Yanlin Wang ◽  
Shuai Yu ◽  
Yanqing Huang ◽  
Huanchu Liu ◽  
...  

1984 ◽  
Vol 11 (6) ◽  
pp. 553 ◽  
Author(s):  
ME Nicolas ◽  
RM Gleadow ◽  
MJ Dalling

The effects of two levels of temperature and of water supply on grain development of wheat (cv. Warigal) were studied by imposing treatments during the early or late period of cell division. High temperature (28°C day/20°C night) accelerated development of the grain. Dry matter accumulation and cell division proceeded at a higher rate but had a shorter duration in the high temperature treatments. Maximum cell number, final cell size and the number of large starch granules per cell were not significantly reduced by high temperature. Drought and drought × high temperature reduced the storage capacity of the grain, with a decrease in number of cells and starch granules in the endosperm. Cell size was also reduced when treatments were imposed late during cell division. Duration of dry matter accumulation and cell division was reduced in the drought and drought × high temperature treatments. The combined effects of drought and high temperature were much more severe than those of each separate treatment. The amount of sucrose per cell was similar in all treatments. It appears unlikely that the supply of sucrose to the endosperm cells is the main limiting factor of dry matter accumulation in both drought and high temperature treatments.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1078
Author(s):  
Yin Wang ◽  
Yaqi Cao ◽  
Guozhong Feng ◽  
Xiaoyu Li ◽  
Lin Zhu ◽  
...  

To increase crop productivity while reducing environmental costs, an integrated soil–crop system management (ISSM) strategy was developed and successfully adopted in China. However, little information is available on the long-term ISSM effects on maize agronomic and environmental performance. Therefore, we evaluated the effects of ISSM with combining inorganic and organic fertilizers on maize productivity, N use efficiency (NUE) and N balance and losses as compared with farmers’ practice (FP) and high-yielding practice (HY), based on an 11-year field experiment in Northeast China. Maize yield in ISSM (11.7–14.3 Mg ha−1) achieved 97.7% of that in HY and was increased by 27% relative to FP. The excellent yield performance in ISSM was mainly attributed to optimum plant population structure and yield components. Annual N surplus in ISSM was only 7 kg ha−1, which was considerably lower than that in FP (52 kg ha−1) and HY (109 kg ha−1). Consequently, ISSM obtained significantly lower N losses and greenhouse gases emissions and higher NUE. In contrast to FP, crop performance in ISSM showing better sustainability and inter-annual stability. In conclusion, ISSM is an effective strategy to achieve long-term sustainable high crop yields and NUE with less environmental costs in the intensive agricultural system.


2020 ◽  
Author(s):  
Jianying Feng ◽  
Yu Zhang ◽  
Suping Wang

&lt;p&gt;In 2018, severe meteorological drought occurred in the southwest of Northeast China, the &amp;#160;east-central of Inner Mongolia and the east of North China. Drought shows obvious regional and stage nature&amp;#160;.In early March, mild to moderate drought appeared in North China, followed by severe drought in parts of northern and eastern of Hebe province.&amp;#160;After the middle of April, the drought was alleviated obviously, and the drought in the southwest of Northeast China began to show signs. In &amp;#160;early May, there was mild to moderate drought in the central and eastern part of Inner Mongolia, and&amp;#160;the drought in Northeast China developed. From June to early&amp;#160;August, severe drought&amp;#160;and above occurred in parts of&amp;#160;Liaoning province ,&amp;#160;Inner Mongolia and North China.&amp;#160;In mid-August, in addition to Liaoning province and North China, there were scattered light to moderate drought, drought relief in the northern China. In early September, the drought in North China increased and the range spread northward, and there were droughts of different degrees in the whole North China.In winter, there is only mild drought in North China.&lt;/p&gt;&lt;p&gt;The drought in this region has affected the agricultural production in different degrees. Spring sowing is blocked in the east of Inner Mongolia and the west of Northeast China, and high temperature in summer leads to the development of drought, corn and rice and other crops are adversely affected.&lt;/p&gt;&lt;p&gt;From&amp;#160;spring&amp;#160;to&amp;#160;autumn, the precipitation in most parts of the drought disaster &amp;#160;area is less than 10-40%, and the temperature is higher than 1-2 &amp;#8451;. The lack of precipitation and abnormal high temperature accelerated the loss of surface water, which resulted in the occurrence of drought in this area.&lt;/p&gt;&lt;p&gt;In spring of 2018, the middle and high latitudes are generally controlled by flat air flow, which is not conducive to the establishment of trough ridge, making the northern dry area lack of favorable precipitation conditions; in summer and autumn, the existence of Baikal Lake high-pressure ridge, resulting in circulation patterns that are not conducive to the precipitation conditions in the northern dry area. Among them, the obvious flat air flow in spring and the obvious high pressure ridge in summer are the main reasons for the outstanding drought in spring and summer in the northern arid area.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document