scholarly journals Structural mechanism of the enhanced glass-forming ability in multicomponent alloys with positive heat of mixing

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Y. Wu ◽  
S. H. Wei ◽  
G. Q. Guo ◽  
J. G. Wang ◽  
L. Yang
2010 ◽  
Vol 654-656 ◽  
pp. 1042-1045 ◽  
Author(s):  
Qing Sheng Zhang ◽  
Wei Zhang ◽  
Dmitri V. Louzguine-Luzgin ◽  
Akihisa Inoue

A new series of bulk metallic glasses were developed by addition of Fe into the ternary Zr60Cu30Al10 alloy. Although Fe-Cu element pair shows distinct immiscibility with a large positive heat of mixing, substitution of Fe for Cu significantly improves the glass-forming ability of the ternary Zr60Cu30Al10 alloy. The critical diameter for glass-formation increases from 8 mm for Zr60Cu30Al10 alloy to 20 mm for Zr60Cu25Fe5Al10 and Zr62.5Cu22.5Fe5Al10 alloys. As compared with the ternary Zr60Cu30Al10 alloy, the new quaternary Zr-Cu-Fe-Al alloys show lower liquidus temperatures. The Zr60Cu25Fe5Al10 and Zr62.5Cu22.5Fe5Al10 alloys, the best BMG-formers in this alloy system, are found to locate very near a Zr-Cu-Fe-Al eutectic point. The new Zr-Fe-Cu-Al bulk metallic glasses exhibit high strength of about 1700 MPa. The plastic strain increases from 7.8% to 11.3% with increasing the content of Fe from 0 to 12.5%. The finding of a Ni-free Zr-based bulk glassy alloy with the extremely high glass-forming ability is expected to extend the future application of bulk metallic glasses.


2013 ◽  
Vol 745-746 ◽  
pp. 734-739 ◽  
Author(s):  
J. Tan ◽  
Fu Sheng Pan ◽  
C.J. Li ◽  
J.F. Wang ◽  
J. Eckert

The change in the internal states of Zr56Co28Al16 bulk metallic glass (BMG) upon minor substitution of Co with Fe was investigated for alloys with different compositions of Zr56Co28-xAl16Fex (x = 0, 1 and 2, respectively). Results exhibited that the ductile Zr-Co-Al-Fe BMGs were obtained and showed better glass-forming ability (GFA) via a small amount of Co partial replacement by Fe. In addition, the addition of a small amount of Fe enhanced the crystallization process and reduced the activation energy. The micro-alloying with Fe reduced the heat of mixing, which made the rearrangement of atoms easier during the crystallization process.


2020 ◽  
Vol 126 ◽  
pp. 106911
Author(s):  
Ming-fei Li ◽  
Chanyoung Song ◽  
Yi-fu Wang ◽  
Youngsong Cho ◽  
Qiaoshi Zeng ◽  
...  

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2314-2319
Author(s):  
YUNFEI JI ◽  
SHUJIE PANG ◽  
CHAOLI MA ◽  
TAO ZHANG

The effect of alloy composition on improving glass-forming ability of La -based alloys is investigated in this work. Previous composition criteria demonstrated that the alloys with high glass-forming ability should have negative heats of mixing among the main constituent elements. In this study, the addition of Fe to a La -based La - Al - Ni - Cu alloy significantly improved the glass-forming ability, although the heat of mixing between Fe and the main element La is positive. La - Al - Ni - Cu - Fe bulk metallic glasses with diameters up to 15 mm were prepared by the method of pouring the molten alloys into a copper mold. These La - Al - Ni - Cu - Fe bulk metallic glasses exhibit relatively wide supercooled liquid region of about 50 k, and high T rg (T g /T l ) and γ(T x /(T g +T l )) values. It is found that the addition of Fe to the La - Al - Ni - Cu alloy lowers the Gibbs free energy difference between the liquid and crystalline phases in the supercooled liquid region and enhances the glass-forming ability of the alloy.


Sign in / Sign up

Export Citation Format

Share Document