Control of reaction course of the excited state of charge-transfer complexes by the free energy of backward electron transfer

1998 ◽  
pp. 2093-2094 ◽  
Author(s):  
Naoki Haga ◽  
Hiroaki Takayanagi ◽  
Katsumi Tokumaru
2017 ◽  
Vol 114 (7) ◽  
pp. 1480-1485 ◽  
Author(s):  
Puja Goyal ◽  
Sharon Hammes-Schiffer

Blue light using flavin adenine dinucleotide (BLUF) proteins are essential for the light regulation of a variety of physiologically important processes and serve as a prototype for photoinduced proton-coupled electron transfer (PCET). Free-energy simulations elucidate the active site conformations in the AppA (activation of photopigment and puc expression) BLUF domain before and following photoexcitation. The free-energy profile for interconversion between conformations with either Trp104 or Met106 closer to the flavin, denoted Trpin/Metout and Trpout/Metin, reveals that both conformations are sampled on the ground state, with the former thermodynamically favorable by ∼3 kcal/mol. These results are consistent with the experimental observation of both conformations. To analyze the proton relay from Tyr21 to the flavin via Gln63, the free-energy profiles for Gln63 rotation were calculated on the ground state, the locally excited state of the flavin, and the charge-transfer state associated with electron transfer from Tyr21 to the flavin. For the Trpin/Metout conformation, the hydrogen-bonding pattern conducive to the proton relay is not thermodynamically favorable on the ground state but becomes more favorable, corresponding to approximately half of the configurations sampled, on the locally excited state. The calculated energy gaps between the locally excited and charge-transfer states suggest that electron transfer from Tyr21 to the flavin is more facile for configurations conducive to proton transfer. When the active site conformation is not conducive to PCET from Tyr21, Trp104 can directly compete with Tyr21 for electron transfer to the flavin through a nonproductive pathway, impeding the signaling efficiency.


2020 ◽  
Vol 19 (9) ◽  
pp. 1189-1200
Author(s):  
Mikhail V. Rusalov ◽  
Valery V. Volchkov ◽  
Vladimir L. Ivanov ◽  
Mikhail Ya. Melnikov ◽  
Fedor E. Gostev ◽  
...  

Charge transfer complexes between bis(18-crown-6)stilbene and viologen analogues. A femtosecond study of photoinduced electron transfer.


1976 ◽  
Vol 54 (14) ◽  
pp. 2261-2265 ◽  
Author(s):  
Z. M. Hashish ◽  
I. M. Hoodless

The dehydrogenation of 1,4-dihydronaphthalene by tetrachloro-p-benzoquinone in phenetole solution has been investigated. The present work does not fully confirm earlier studies which report that the reaction follows second-order kinetics and that the hydride ion transfer is rate determining. In the investigations described in this paper second-order kinetics are only observed in the later stages of the reaction and a 1:1 stoichiometry of the reactants in the process is not obtained. Substitution of tritium in the 1,4-positions of the hydrocarbon appears to not significantly affect the reaction rate. The present results indicate that charge-transfer complexes are formed in the reaction and it is suggested that electron transfer within these complexes could be the rate-determining step in the dehydrogenation.


2012 ◽  
Vol 109 (38) ◽  
pp. 15132-15135 ◽  
Author(s):  
Akitaka Ito ◽  
David J. Stewart ◽  
Zhen Fang ◽  
M. Kyle Brennaman ◽  
Thomas J. Meyer

Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å.


2014 ◽  
Vol 43 (47) ◽  
pp. 17677-17693 ◽  
Author(s):  
Paul A. Scattergood ◽  
Milan Delor ◽  
Igor V. Sazanovich ◽  
Oleg V. Bouganov ◽  
Sergei A. Tikhomirov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document