P–ρ–T and Ps–ρs–Ts properties of methanol + water and n-propanol + water solutions in wide range of state parametersElectronic supplementary information (ESI) available: Tables of values of the coefficients in eqn. (1), eqn. (7), eqn. (8) and eqn. (9). See http://www.rsc.org/suppdata/cp/b1/b109077c/

2002 ◽  
Vol 4 (6) ◽  
pp. 979-986 ◽  
Author(s):  
Astan N. Shahverdiyev ◽  
Javid T. Safarov
Author(s):  
Richard Jiang ◽  
Bruno Jacob ◽  
Matthew Geiger ◽  
Sean Matthew ◽  
Bryan Rumsey ◽  
...  

Abstract Summary We present StochSS Live!, a web-based service for modeling, simulation and analysis of a wide range of mathematical, biological and biochemical systems. Using an epidemiological model of COVID-19, we demonstrate the power of StochSS Live! to enable researchers to quickly develop a deterministic or a discrete stochastic model, infer its parameters and analyze the results. Availability and implementation StochSS Live! is freely available at https://live.stochss.org/ Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Darawan Rinchai ◽  
Jessica Roelands ◽  
Mohammed Toufiq ◽  
Wouter Hendrickx ◽  
Matthew C Altman ◽  
...  

Abstract Motivation We previously described the construction and characterization of generic and reusable blood transcriptional module repertoires. More recently we released a third iteration (“BloodGen3” module repertoire) that comprises 382 functionally annotated gene sets (modules) and encompasses 14,168 transcripts. Custom bioinformatic tools are needed to support downstream analysis, visualization and interpretation relying on such fixed module repertoires. Results We have developed and describe here a R package, BloodGen3Module. The functions of our package permit group comparison analyses to be performed at the module-level, and to display the results as annotated fingerprint grid plots. A parallel workflow for computing module repertoire changes for individual samples rather than groups of samples is also available; these results are displayed as fingerprint heatmaps. An illustrative case is used to demonstrate the steps involved in generating blood transcriptome repertoire fingerprints of septic patients. Taken together, this resource could facilitate the analysis and interpretation of changes in blood transcript abundance observed across a wide range of pathological and physiological states. Availability The BloodGen3Module package and documentation are freely available from Github: https://github.com/Drinchai/BloodGen3Module Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3011-3017 ◽  
Author(s):  
Olga Mineeva ◽  
Mateo Rojas-Carulla ◽  
Ruth E Ley ◽  
Bernhard Schölkopf ◽  
Nicholas D Youngblut

Abstract Motivation Methodological advances in metagenome assembly are rapidly increasing in the number of published metagenome assemblies. However, identifying misassemblies is challenging due to a lack of closely related reference genomes that can act as pseudo ground truth. Existing reference-free methods are no longer maintained, can make strong assumptions that may not hold across a diversity of research projects, and have not been validated on large-scale metagenome assemblies. Results We present DeepMAsED, a deep learning approach for identifying misassembled contigs without the need for reference genomes. Moreover, we provide an in silico pipeline for generating large-scale, realistic metagenome assemblies for comprehensive model training and testing. DeepMAsED accuracy substantially exceeds the state-of-the-art when applied to large and complex metagenome assemblies. Our model estimates a 1% contig misassembly rate in two recent large-scale metagenome assembly publications. Conclusions DeepMAsED accurately identifies misassemblies in metagenome-assembled contigs from a broad diversity of bacteria and archaea without the need for reference genomes or strong modeling assumptions. Running DeepMAsED is straight-forward, as well as is model re-training with our dataset generation pipeline. Therefore, DeepMAsED is a flexible misassembly classifier that can be applied to a wide range of metagenome assembly projects. Availability and implementation DeepMAsED is available from GitHub at https://github.com/leylabmpi/DeepMAsED. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (24) ◽  
pp. 5103-5112
Author(s):  
Albert Y Xue ◽  
Angela M Yu ◽  
Julius B Lucks ◽  
Neda Bagheri

Abstract Motivation RNA molecules can undergo complex structural dynamics, especially during transcription, which influence their biological functions. Recently developed high-throughput chemical probing experiments that study RNA cotranscriptional folding generate nucleotide-resolution ‘reactivities’ for each length of a growing nascent RNA that reflect structural dynamics. However, the manual annotation and qualitative interpretation of reactivity across these large datasets can be nuanced, laborious, and difficult for new practitioners. We developed a quantitative and systematic approach to automatically detect RNA folding events from these datasets to reduce human bias/error, standardize event discovery and generate hypotheses about RNA folding trajectories for further analysis and experimental validation. Results Detection of Unknown Events with Tunable Thresholds (DUETT) identifies RNA structural transitions in cotranscriptional RNA chemical probing datasets. DUETT employs a feedback control-inspired method and a linear regression approach and relies on interpretable and independently tunable parameter thresholds to match qualitative user expectations with quantitatively identified folding events. We validate the approach by identifying known RNA structural transitions within the cotranscriptional folding pathways of the Escherichia coli signal recognition particle RNA and the Bacillus cereus crcB fluoride riboswitch. We identify previously overlooked features of these datasets such as heightened reactivity patterns in the signal recognition particle RNA about 12 nt lengths before base-pair rearrangement. We then apply a sensitivity analysis to identify tradeoffs when choosing parameter thresholds. Finally, we show that DUETT is tunable across a wide range of contexts, enabling flexible application to study broad classes of RNA folding mechanisms. Availability and implementation https://github.com/BagheriLab/DUETT. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (21) ◽  
pp. 4442-4444 ◽  
Author(s):  
Jia-Xing Yue ◽  
Gianni Liti

Abstract Summary Simulated genomes with pre-defined and random genomic variants can be very useful for benchmarking genomic and bioinformatics analyses. Here we introduce simuG, a lightweight tool for simulating the full-spectrum of genomic variants (single nucleotide polymorphisms, Insertions/Deletions, copy number variants, inversions and translocations) for any organisms (including human). The simplicity and versatility of simuG make it a unique general-purpose genome simulator for a wide-range of simulation-based applications. Availability and implementation Code in Perl along with user manual and testing data is available at https://github.com/yjx1217/simuG. This software is free for use under the MIT license. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (9) ◽  
pp. 2929-2931 ◽  
Author(s):  
Hakan Ozadam ◽  
Michael Geng ◽  
Can Cenik

Abstract Summary Ribosome occupancy measurements enable protein abundance estimation and infer mechanisms of translation. Recent studies have revealed that sequence read lengths in ribosome profiling data are highly variable and carry critical information. Consequently, data analyses require the computation and storage of multiple metrics for a wide range of ribosome footprint lengths. We developed a software ecosystem including a new efficient binary file format named ‘ribo’. Ribo files store all essential data grouped by ribosome footprint lengths. Users can assemble ribo files using our RiboFlow pipeline that processes raw ribosomal profiling sequencing data. RiboFlow is highly portable and customizable across a large number of computational environments with built-in capabilities for parallelization. We also developed interfaces for writing and reading ribo files in the R (RiboR) and Python (RiboPy) environments. Using RiboR and RiboPy, users can efficiently access ribosome profiling quality control metrics, generate essential plots and carry out analyses. Altogether, these components create a software ecosystem for researchers to study translation through ribosome profiling. Availability and implementation For a quickstart, please see https://ribosomeprofiling.github.io. Source code, installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3043-3048 ◽  
Author(s):  
Michael A Peabody ◽  
Wing Yin Venus Lau ◽  
Gemma R Hoad ◽  
Baofeng Jia ◽  
Finlay Maguire ◽  
...  

Abstract Motivation Many methods for microbial protein subcellular localization (SCL) prediction exist; however, none is readily available for analysis of metagenomic sequence data, despite growing interest from researchers studying microbial communities in humans, agri-food relevant organisms and in other environments (e.g. for identification of cell-surface biomarkers for rapid protein-based diagnostic tests). We wished to also identify new markers of water quality from freshwater samples collected from pristine versus pollution-impacted watersheds. Results We report PSORTm, the first bioinformatics tool designed for prediction of diverse bacterial and archaeal protein SCL from metagenomics data. PSORTm incorporates components of PSORTb, one of the most precise and widely used protein SCL predictors, with an automated classification by cell envelope. An evaluation using 5-fold cross-validation with in silico-fragmented sequences with known localization showed that PSORTm maintains PSORTb’s high precision, while sensitivity increases proportionately with metagenomic sequence fragment length. PSORTm’s read-based analysis was similar to PSORTb-based analysis of metagenome-assembled genomes (MAGs); however, the latter requires non-trivial manual classification of each MAG by cell envelope, and cannot make use of unassembled sequences. Analysis of the watershed samples revealed the importance of normalization and identified potential biomarkers of water quality. This method should be useful for examining a wide range of microbial communities, including human microbiomes, and other microbiomes of medical, environmental or industrial importance. Availability and implementation Documentation, source code and docker containers are available for running PSORTm locally at https://www.psort.org/psortm/ (freely available, open-source software under GNU General Public License Version 3). Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Xiaofan Lu ◽  
Jialin Meng ◽  
Yujie Zhou ◽  
Liyun Jiang ◽  
Fangrong Yan

Abstract Summary Stratification of cancer patients into distinct molecular subgroups based on multi-omics data is an important issue in the context of precision medicine. Here, we present MOVICS, an R package for multi-omics integration and visualization in cancer subtyping. MOVICS provides a unified interface for 10 state-of-the-art multi-omics integrative clustering algorithms, and incorporates the most commonly used downstream analyses in cancer subtyping researches, including characterization and comparison of identified subtypes from multiple perspectives, and verification of subtypes in external cohort using two model-free approaches for multiclass prediction. MOVICS also creates feature rich customizable visualizations with minimal effort. By analysing two published breast cancer cohort, we signifies that MOVICS can serve a wide range of users and assist cancer therapy by moving away from the ‘one-size-fits-all’ approach to patient care. Availability and implementation MOVICS package and online tutorial are freely available at https://github.com/xlucpu/MOVICS. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Kai Cheng ◽  
Gabrielle Pawlowski ◽  
Xinheng Yu ◽  
Yusen Zhou ◽  
Sriram Neelamegham

Abstract Summary This manuscript describes an open-source program, DrawGlycan-SNFG (version 2), that accepts IUPAC (International Union of Pure and Applied Chemist)-condensed inputs to render Symbol Nomenclature For Glycans (SNFG) drawings. A wide range of local and global options enable display of various glycan/peptide modifications including bond breakages, adducts, repeat structures, ambiguous identifications etc. These facilities make DrawGlycan-SNFG ideal for integration into various glycoinformatics software, including glycomics and glycoproteomics mass spectrometry (MS) applications. As a demonstration of such usage, we incorporated DrawGlycan-SNFG into gpAnnotate, a standalone application to score and annotate individual MS/MS glycopeptide spectrum in different fragmentation modes. Availability and implementation DrawGlycan-SNFG and gpAnnotate are platform independent. While originally coded using MATLAB, compiled packages are also provided to enable DrawGlycan-SNFG implementation in Python and Java. All programs are available from https://virtualglycome.org/drawglycan; https://virtualglycome.org/gpAnnotate. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Pierre Morisse ◽  
Claire Lemaitre ◽  
Fabrice Legeai

Abstract Motivation Linked-Reads technologies combine both the high-quality and low cost of short-reads sequencing and long-range information, through the use of barcodes tagging reads which originate from a common long DNA molecule. This technology has been employed in a broad range of applications including genome assembly, phasing and scaffolding, as well as structural variant calling. However, to date, no tool or API dedicated to the manipulation of Linked-Reads data exist. Results We introduce LRez, a C ++ API and toolkit which allows easy management of Linked-Reads data. LRez includes various functionalities, for computing numbers of common barcodes between genomic regions, extracting barcodes from BAM files, as well as indexing and querying BAM, FASTQ and gzipped FASTQ files to quickly fetch all reads or alignments containing a given barcode. LRez is compatible with a wide range of Linked-Reads sequencing technologies, and can thus be used in any tool or pipeline requiring barcode processing or indexing, in order to improve their performances. Availability and implementation LRez is implemented in C ++, supported on Unix-based platforms, and available under AGPL-3.0 License at https://github.com/morispi/LRez, and as a bioconda module. Supplementary information Supplementary data are available at Bioinformatics Advances


Sign in / Sign up

Export Citation Format

Share Document