X–N Charge density analysis of the hydrogen bonding motif in 1-(2-hydroxy-5-nitrophenyl)ethanoneElectronic supplementary information (ESI) available: multipole population coefficients and pseudoatom parameterization. See http://www.rsc.org/suppdata/ob/b2/b211683a/

2003 ◽  
Vol 1 (7) ◽  
pp. 1191-1198 ◽  
Author(s):  
David E. Hibbs ◽  
Jacob Overgaard ◽  
Ross O. Piltz
Author(s):  
Gnanasekaran Rajalakshmi ◽  
Venkatesha R. Hathwar ◽  
Poomani Kumaradhas

Isoniazid (isonicotinohydrazide) is an important first-line antitubercular drug that targets the InhA enzyme which synthesizes the critical component of the mycobacterial cell wall. An experimental charge-density analysis of isoniazid has been performed to understand its structural and electronic properties in the solid state. A high-resolution single-crystal X-ray intensity data has been collected at 90 K. An aspherical multipole refinement was carried out to explore the topological and electrostatic properties of the isoniazid molecule. The experimental results were compared with the theoretical charge-density calculations performed usingCRYSTAL09with the B3LYP/6-31G** method. A topological analysis of the electron density reveals that the Laplacian of electron density of the N—N bond is significantly less negative, which indicates that the charges at the b.c.p. (bond-critical point) of the bond are least accumulated, and so the bond is considered to be weak. As expected, a strong negative electrostatic potential region is present in the vicinity of the O1, N1 and N3 atoms, which are the reactive locations of the molecule. The C—H...N, C—H...O and N—H...N types of intermolecular hydrogen-bonding interactions stabilize the crystal structure. The topological analysis of the electron density on hydrogen bonding shows the strength of intermolecular interactions.


2008 ◽  
Vol 120 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Reji Thomas ◽  
Shrinwantu Pal ◽  
Ayan Datta ◽  
Mariusz K. Marchewka ◽  
Henryk Ratajczak ◽  
...  

Author(s):  
Mysore. S Pavan ◽  
Sounak Sarkar ◽  
Tayur N. Guru Row

Experimental and theoretical charge density analyses on isomers of mercaptobenzoic acid have been carried out to quantify the hydrogen bonding of the hitherto less explored thiols, to assess the strength of the interactions using the topological features of the electron density. The electron density study offers interesting insights into the nature of the S—H...S interaction. The interaction energy is comparable with that of a weak hydrogen bond. The strength and directionality of the S—H...S hydrogen bond is demonstrated to be mainly due to the conformation locking potential of the intramolecular S...O chalcogen bond in 2-mercaptobenzoic acid and is stronger than in 3-mercaptobenzoic acid, which lacks the intramolecular S...O bond. Thepara-substituted mercaptobenzoic acid depicts a type I S...S interaction.


ChemInform ◽  
2010 ◽  
Vol 41 (13) ◽  
Author(s):  
T. Noritake ◽  
M. Aoki ◽  
M. Matsumoto ◽  
K. Miwa ◽  
S. Towata ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2074
Author(s):  
Sara Tabandeh ◽  
Cristina Elisabeth Lemus ◽  
Lorraine Leon

Electrostatic interactions, and specifically π-interactions play a significant role in the liquid-liquid phase separation of proteins and formation of membraneless organelles/or biological condensates. Sequence patterning of peptides allows creating protein-like structures and controlling the chemistry and interactions of the mimetic molecules. A library of oppositely charged polypeptides was designed and synthesized to investigate the role of π-interactions on phase separation and secondary structures of polyelectrolyte complexes. Phenylalanine was chosen as the π-containing residue and was used together with lysine or glutamic acid in the design of positively or negatively charged sequences. The effect of charge density and also the substitution of fluorine on the phenylalanine ring, known to disrupt π-interactions, were investigated. Characterization analysis using MALDI-TOF mass spectroscopy, H NMR, and circular dichroism (CD) confirmed the molecular structure and chiral pattern of peptide sequences. Despite an alternating sequence of chirality previously shown to promote liquid-liquid phase separation, complexes appeared as solid precipitates, suggesting strong interactions between the sequence pairs. The secondary structures of sequence pairs showed the formation of hydrogen-bonded structures with a β-sheet signal in FTIR spectroscopy. The presence of fluorine decreased hydrogen bonding due to its inhibitory effect on π-interactions. π-interactions resulted in enhanced stability of complexes against salt, and higher critical salt concentrations for complexes with more π-containing amino acids. Furthermore, UV-vis spectroscopy showed that sequences containing π-interactions and increased charge density encapsulated a small charged molecule with π-bonds with high efficiency. These findings highlight the interplay between ionic, hydrophobic, hydrogen bonding, and π-interactions in polyelectrolyte complex formation and enhance our understanding of phase separation phenomena in protein-like structures.


Author(s):  
Zhijie Chua ◽  
Bartosz Zarychta ◽  
Christopher G. Gianopoulos ◽  
Vladimir V. Zhurov ◽  
A. Alan Pinkerton

A high-resolution X-ray diffraction measurement of 2,5-dichloro-1,4-benzoquinone (DCBQ) at 20 K was carried out. The experimental charge density was modeled using the Hansen–Coppens multipolar expansion and the topology of the electron density was analyzed in terms of the quantum theory of atoms in molecules (QTAIM). Two different multipole models, predominantly differentiated by the treatment of the chlorine atom, were obtained. The experimental results have been compared to theoretical results in the form of a multipolar refinement against theoretical structure factors and through direct topological analysis of the electron density obtained from the optimized periodic wavefunction. The similarity of the properties of the total electron density in all cases demonstrates the robustness of the Hansen–Coppens formalism. All intra- and intermolecular interactions have been characterized.


2011 ◽  
Vol 67 (a1) ◽  
pp. C99-C100 ◽  
Author(s):  
E. Espinosa ◽  
T. T. T. Bui ◽  
S. Dahaoui ◽  
E. Aubert ◽  
C. Lecomte ◽  
...  

2006 ◽  
Vol 84 (5) ◽  
pp. 771-781 ◽  
Author(s):  
Cina Foroutan-Nejad ◽  
Gholam Hossein Shafiee ◽  
Abdolreza Sadjadi ◽  
Shant Shahbazian

In this study, a detailed topological charge density analysis based on the quantum theory of atoms in molecules (QTAIM) developed by Bader and co-workers, has been accomplished (using the B3LYP method) on the CB62– anion and three planar isomers of the C3B4 species, which had been first proposed by Exner and Schleyer as examples of molecules containing hexacoordinate carbon atoms. The analysis uncovers the strong (covalent) interactions of boron atoms as well as the "nondirectional" interaction of central carbon atom with those peripheral atoms. On the other hand, instabilities have been found in the topological networks of (B6C)2– and B4C3(para) species. A detailed investigation of these instabilities demonstrates that the topology of charge density has a floppy nature near the equilibrium geometries of the species under study. Thus, these species seems to be best described as complexes of a relatively concrete ring containing boron or carbon atoms and a central carbon atom that is confined in the plane of the molecule, but with nondirectional interactions with the surrounding atoms.Key words: hypervalency, hexacoordinate carbon, quantum theory of atoms in molecules, charge density analysis, ab initio methods.


Sign in / Sign up

Export Citation Format

Share Document