Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubesElectronic supplementary information (ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase. See http://www.rsc.org/suppdata/cc/b3/b306504a/

2003 ◽  
pp. 2136 ◽  
Author(s):  
Freddy Kleitz ◽  
Shin Hei Choi ◽  
Ryong Ryoo
2012 ◽  
Vol 147 (1) ◽  
pp. 242-251 ◽  
Author(s):  
Changchang Liu ◽  
Xiaoming Wang ◽  
Sungchul Lee ◽  
Lisa D. Pfefferle ◽  
Gary L. Haller

2020 ◽  
Vol 10 ◽  
Author(s):  
Manish Dwivedi ◽  
Vijay Tripathi ◽  
Dhruv Kumar ◽  
Dwijendra K. Gupta

Aims: CdS nanoparticles are an attractive material having application in various field like as pigment in paints, biotag for bioimaging and many more optoelectronic as well as biological applications. Present study aims to synthesize and characterize the CdS nanoparticles to make it applicable in different areas Objectives: Preparation CdS nanoparticles by using simple and facile chemical methods and further physical and structural characterization using various physical tools Methods: In present work CdS nanoparticles has been synthesized by using rationally simple chemical precipitation method with some modi-fication on temperature and incubation time in existed methods. Characterizations were done by employing XRD, SEM, TEM, AFM tech-niques Results: Simple chemical method produces the CdS nanoparticles with the size about 100-200 nm in length and 5-10 nm in diameter. The SEM studies show that the CdS nanoparticles can agglomerate and form a continuous network like structure. The X-ray diffraction (XRD) measurements show the single-phase formation of CdS nanoparticles with the structure of cubic phase, and the broadening of XRD patterns indicates that the prepared samples are nanostructured. Our analysis on CdS nanoparticles by using transmission electron microscope and atomic force microscope (AFM) revealed that the nanoparticles form both spherical and nearly rod shaped with the average size applicable for biotagging. UV-Vis spectroscopic analysis reveals blue shift in the absorption peak probably caused by quantum confinement Conclusion: The observed CdS nanoparticles were appeared yellow in color. The XRD pattern of the CdS nanoparticles showed that the materials were of nanometric sized regime with a predominantly cubic phase along with the rod and round morphology. The study and char-acterization of CdS nanoparticles will bring us a new approach to understand biological problem by tagging nanoparticles with biomolecules and further suggests that the CdS nanoparticles formulate it more suitable biocompatible nanomaterial for biotagging and bioimaging


Sign in / Sign up

Export Citation Format

Share Document