Metal ion induced allosteric transition in the catalytic activity of an artificial phosphodiesteraseElectronic supplementary information (ESI) available: synthesis of 1, characterization of complexes by 1H-NMR and ESI-MS spectroscopies and the analysis of the kinetic data. See http://www.rsc.org/suppdata/cc/b3/b314032f/

2004 ◽  
pp. 420 ◽  
Author(s):  
Shinji Takebayashi ◽  
Masato Ikeda ◽  
Masayuki Takeuchi ◽  
Seiji Shinkai

Author(s):  
VAIRALAKSHMI M ◽  
PRINCESS R ◽  
JOHNSON RAJA S

Objectives: The aim of our work was to synthesize novel mixed ligand-metal complexes and evaluation of antimicrobial, antioxidant assay, and analysis of catalytic oxidation of cyclohexane. Methods: The complexes were characterized by means of various physicochemical techniques such as elemental analysis, molar conductance, magnetic susceptibility, infrared (IR), electronic absorption, 1H NMR (proton magnetic resonance), and mass spectral studies. The antimicrobial screening study was done by disc diffusion method. The catalytic activity of the complexes was observed in the oxidation of cyclohexane using eco-friendly hydrogen peroxide as oxidant. Results: On comparing the 1H NMR and IR spectral data of free ligand and its complexes, it was found to be azomethine (CH=N) proton which is formed in the free ligand. During complexation, the azomethine proton is coordinated to the metal ion and the phenolic oxygen is coordinated to the metal ion by deprotonation. The analytical data and mass spectra of the ligand and the complexes confirm the stoichiometry of metal complexes as being of the (MLY)Cl type and the metal to ligand ratio is 1:1. The antimicrobial, antioxidant, and catalytic potential were evaluated and the result shows the better activity of the complexes than the ligand. Conclusion: It was found to be copper(II) and zinc(II) complexes which are effective against all the bacteria when compared to standard drug streptomycin. Copper(II) complex was found to be effective antibacterial agent against Aspergillus niger and Aspergillus flavus in comparison to the standard drug Nystatin. The zinc complex exhibited good catalytic activity.



2005 ◽  
Vol 388 (2) ◽  
pp. 515-525 ◽  
Author(s):  
Peter BENCÚR ◽  
Herta STEINKELLNER ◽  
Barbara SVOBODA ◽  
Jan MUCHA ◽  
Richard STRASSER ◽  
...  

XylT (β1,2-xylosyltransferase) is a unique Golgi-bound glycosyltransferase that is involved in the biosynthesis of glycoprotein-bound N-glycans in plants. To delineate the catalytic domain of XylT, a series of N-terminal deletion mutants was heterologously expressed in insect cells. Whereas the first 54 residues could be deleted without affecting the catalytic activity of the enzyme, removal of an additional five amino acids led to the formation of an inactive protein. Characterization of the N-glycosylation status of recombinant XylT revealed that all three potential N-glycosylation sites of the protein are occupied by N-linked oligosaccharides. However, an unglycosylated version of the enzyme displayed substantial catalytic activity, demonstrating that N-glycosylation is not essential for proper folding of XylT. In contrast with most other glycosyltransferases, XylT is enzymatically active in the absence of added metal ions. This feature is not due to any metal ion directly associated with the enzyme. The precise acceptor substrate specificity of XylT was assessed with several physiologically relevant compounds and the xylosylated reaction products were subsequently tested as substrates of other Golgi-resident glycosyltransferases. These experiments revealed that the substrate specificity of XylT permits the enzyme to act at multiple stages of the plant N-glycosylation pathway.



2008 ◽  
Vol 6 (3) ◽  
pp. 493-499 ◽  
Author(s):  
Shinji Takebayashi ◽  
Seiji Shinkai ◽  
Masato Ikeda ◽  
Masayuki Takeuchi


Sign in / Sign up

Export Citation Format

Share Document