Thiol-ene “click” reactions and recent applications in polymer and materials synthesis

2010 ◽  
Vol 1 (1) ◽  
pp. 17-36 ◽  
Author(s):  
Andrew B. Lowe
2014 ◽  
Vol 5 (17) ◽  
pp. 4820-4870 ◽  
Author(s):  
Andrew B. Lowe

This contribution serves as an update to a previous review (Polym. Chem.2010,1, 17–36) and highlights recent applications of thiol–ene ‘click’ chemistry as an efficient tool for both polymer/materials synthesis as well as modification.


2018 ◽  
Author(s):  
Younghwan Cha ◽  
Jung-In Lee ◽  
Panpan Dong ◽  
Xiahui Zhang ◽  
Min-Kyu Song

A novel strategy for the oxidation of Mg-based intermetallic compounds using CO<sub>2</sub> as an oxidizing agent was realized via simple thermal treatment, called ‘CO2-thermic Oxidation Process (CO-OP)’. Furthermore, as a value-added application, electrochemical properties of one of the reaction products (carbon-coated macroporous silicon) was evaluated. Considering the facile tunability of the chemical/physical properties of Mg-based intermetallics, we believe that this route can provide a simple and versatile platform for functional energy materials synthesis as well as CO<sub>2</sub> chemical utilization in an environment-friendly and sustainable way.


2018 ◽  
Vol 25 (5) ◽  
pp. 636-658 ◽  
Author(s):  
Jan Pokorny ◽  
Lucie Borkova ◽  
Milan Urban

Triterpenoids are natural compounds with a large variety of biological activities such as anticancer, antiviral, antibacterial, antifungal, antiparazitic, antiinflammatory and others. Despite their low toxicity and simple availability from the natural resources, their clinical use is still severely limited by their higher IC50 and worse pharmacological properties than in the currently used therapeutics. This fact encouraged a number of researchers to develop new terpenic derivatives more suitable for the potential clinical use. This review summarizes a new approach to improve both, the activity and ADME-Tox properties by connecting active terpenes to another modifying molecules using click reactions. Within the past few years, this synthetic approach was well explored yielding a lot of great improvements of the parent compounds along with some less successful attempts. A large quantity of the new compounds presented here are superior in both activity and ADME-Tox properties to their parents. This review should serve the researchers who need to promote their hit triterpenic structures towards their clinical use and it is intended as a guide for the chemical synthesis of better drug candidates.


2021 ◽  
pp. 152808372110370
Author(s):  
Faiza Safdar ◽  
Munir Ashraf ◽  
Amjed Javid ◽  
Kashif Iqbal

The rapid proliferation of electronic devices and their operation at high frequencies has raised the contamination of artificial electromagnetic radiations in the atmosphere to an unprecedented level that is responsible for catastrophe for ecology and electronic devices. Therefore, the lightweight and flexible electromagnetic interference (EMI) shielding materials are of vital importance for controlling the pollution generated by such high-frequency EM radiations for protecting ecology and human health as well as the other nearby devices. In this regard, polymeric textile-based shielding composites have been proved to be the best due to their unique properties such as lightweight, excellent flexibility, low density, ease of processability and ease of handling. Moreover, such composites cover range of applications from everyday use to high-tech applications. Various polymeric textiles such as fibers, yarn, woven, nonwoven, knitted, as well as their hybrid composites have been extensively manipulated physically and/or chemically to act as shielding against such harmful radiations. This review encompasses from basic concept of EMI shielding for beginner to the latest research in polymeric-based textile materials synthesis for experts, covering detailed mechanisms with schematic illustration. The review also covers the gap of materials synthesis and their application on polymeric textiles which could be used for EMI shielding applications. Furthermore, recent research regarding rendering EMI shielding properties at various stages of polymeric textile development is provided for readers with critical analysis. Lastly, the applications along with environmental compliance have also been presented for better understanding.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1836
Author(s):  
Nicholas Schaper ◽  
Dheyaa Alameri ◽  
Yoosuk Kim ◽  
Brian Thomas ◽  
Keith McCormack ◽  
...  

A novel and advanced approach of growing zinc oxide nanowires (ZnO NWs) directly on single-walled carbon nanotubes (SWCNTs) and graphene (Gr) surfaces has been demonstrated through the successful formation of 1D–1D and 1D–2D heterostructure interfaces. The direct two-step chemical vapor deposition (CVD) method was utilized to ensure high-quality materials’ synthesis and scalable production of different architectures. Iron-based universal compound molecular ink was used as a catalyst in both processes (a) to form a monolayer of horizontally defined networks of SWCNTs interfaced with vertically oriented ZnO NWs and (b) to grow densely packed ZnO NWs directly on a graphene surface. We show here that our universal compound molecular ink is efficient and selective in the direct synthesis of ZnO NWs/CNTs and ZnO NWs/Gr heterostructures. Heterostructures were also selectively patterned through different fabrication techniques and grown in predefined locations, demonstrating an ability to control materials’ placement and morphology. Several characterization tools were employed to interrogate the prepared heterostructures. ZnO NWs were shown to grow uniformly over the network of SWCNTs, and much denser packed vertically oriented ZnO NWs were produced on graphene thin films. Such heterostructures can be used widely in many potential applications, such as photocatalysts, supercapacitors, solar cells, piezoelectric or thermal actuators, as well as chemical or biological sensors.


2013 ◽  
Vol 51 (23) ◽  
pp. 5029-5037 ◽  
Author(s):  
Murat Tonga ◽  
Gulen Yesilbag Tonga ◽  
Gonca Seber ◽  
Ozgul Gok ◽  
Amitav Sanyal
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pankaj Rajak ◽  
Aravind Krishnamoorthy ◽  
Ankit Mishra ◽  
Rajiv Kalia ◽  
Aiichiro Nakano ◽  
...  

AbstractPredictive materials synthesis is the primary bottleneck in realizing functional and quantum materials. Strategies for synthesis of promising materials are currently identified by time-consuming trial and error and there are no known predictive schemes to design synthesis parameters for materials. We use offline reinforcement learning (RL) to predict optimal synthesis schedules, i.e., a time-sequence of reaction conditions like temperatures and concentrations, for the synthesis of semiconducting monolayer MoS2 using chemical vapor deposition. The RL agent, trained on 10,000 computational synthesis simulations, learned threshold temperatures and chemical potentials for onset of chemical reactions and predicted previously unknown synthesis schedules that produce well-sulfidized crystalline, phase-pure MoS2. The model can be extended to multi-task objectives such as predicting profiles for synthesis of complex structures including multi-phase heterostructures and can predict long-time behavior of reacting systems, far beyond the domain of molecular dynamics simulations, making these predictions directly relevant to experimental synthesis.


Sign in / Sign up

Export Citation Format

Share Document