Conformationally rigid aromatic amino acids as potential building blocks for abiotic foldamers

2011 ◽  
Vol 9 (2) ◽  
pp. 367-369 ◽  
Author(s):  
Veera V. E. Ramesh ◽  
Arup Roy ◽  
Kuruppanthara N. Vijayadas ◽  
Amol M. Kendhale ◽  
Panchami Prabhakaran ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1310
Author(s):  
Fei Peng ◽  
Habibu Aliyu ◽  
André Delavault ◽  
Ulrike Engel ◽  
Jens Rudat

Lignin is an underutilized sustainable source of aromatic compounds. To valorize the low-value lignin monomers, we proposed an efficient strategy, involving enzymatic conversion from trans-p-hydroxycinnamic acids to generate valued-added canonical and non-canonical aromatic amino acids. Among them, β-amino acids are recognized as building blocks for bioactive natural products and pharmaceutical ingredients due to their attractive antitumor properties. Using computational enzyme design, the (R)-β-selective phenylalanine aminomutase from Taxus chinensis (TchPAM) was successfully mutated to accept β-tyrosine as the substrate, as well as to generate the (R)-β-tyrosine with excellent enantiopurity (ee > 99%) as the unique product from trans-p-hydroxycinnamic acid. Moreover, the kinetic parameters were determined for the reaction of four Y424 enzyme variants with the synthesis of different phenylalanine and tyrosine enantiomers. In the ammonia elimination reaction of (R)-β-tyrosine, the variants Y424N and Y424C displayed a two-fold increased catalytic efficiency of the wild type. In this work, a binding pocket in the active site, including Y424, K427, I431, and E455, was examined for its influence on the β-enantioselectivity of this enzyme family. Combining the upstream lignin depolymerization and downstream production, a sustainable value chain based on lignin is enabled. In summary, we report a β-tyrosine synthesis process from a monolignol component, offering a new way for lignin valorization by biocatalyst modification.


2010 ◽  
Vol 12 (17) ◽  
pp. 3870-3873 ◽  
Author(s):  
Falco-Magnus Meyer ◽  
Spiros Liras ◽  
Angel Guzman-Perez ◽  
Christian Perreault ◽  
Jianwei Bian ◽  
...  

2019 ◽  
Author(s):  
A Craig ◽  
N Kolks ◽  
E Urusova ◽  
BD Zlatopolskiy ◽  
B Neumaier

2018 ◽  
Author(s):  
Golaleh Asghari ◽  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  

2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. To get insights into the structure formation, thioflavin T and Congo red binding assays were done which revealed that aggregates may not have amyloid like characteristics. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. The cytotoxicity assays of cysteine and methionine structures were performed on Human Neuroblastoma IMR-32 cells which suggested that aggregates are not cytotoxic in nature and thus, may not have amyloid like etiology. The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


1983 ◽  
Vol 245 (4) ◽  
pp. R556-R563 ◽  
Author(s):  
J. K. Tews ◽  
A. E. Harper

Transport of histidine, valine, or lysine into rat brain slices and across the blood-brain barrier (BBB) was determined in the presence of atypical nonprotein amino acids. Competitors of histidine and valine transport in slices were large neutral amino acids including norleucine, norvaline, alpha-aminooctanoate, beta-methylphenylalanine, and alpha-aminophenylacetate. Less effective were aromatic amino acids with ring substituents; ineffective were basic amino acids and omega-amino isomers of norleucine and aminooctanoate. Lysine transport was moderately depressed by homoarginine or ornithine plus arginine; large neutral amino acids were also similarly inhibitory. Histidine or valine transport across the BBB was also strongly inhibited by large neutral amino acids that were the most effective competitors in the slices (norvaline, norleucine, alpha-aminooctanoate, and alpha-aminophenylacetate); homoarginine and 8-aminooctanoate were ineffective. Homoarginine, ornithine, and arginine almost completely blocked lysine transport, but the large neutral amino acids were barely inhibitory. When rats were fed a single meal containing individual atypical large neutral amino acids or homoarginine, brain pools of certain large neutral amino acids or of arginine and lysine, respectively, were depleted.


Sign in / Sign up

Export Citation Format

Share Document