How does CO capture process on microporous NaY zeolites? A FTIR and DFT combined study

2011 ◽  
Vol 13 (23) ◽  
pp. 11430 ◽  
Author(s):  
O. Cairon ◽  
H. Guesmi
Keyword(s):  
1999 ◽  
Vol 173 ◽  
pp. 327-338 ◽  
Author(s):  
J.A. Fernández ◽  
T. Gallardo

AbstractThe Oort cloud probably is the source of Halley-type (HT) comets and perhaps of some Jupiter-family (JF) comets. The process of capture of Oort cloud comets into HT comets by planetary perturbations and its efficiency are very important problems in comet ary dynamics. A small fraction of comets coming from the Oort cloud − of about 10−2− are found to become HT comets (orbital periods < 200 yr). The steady-state population of HT comets is a complex function of the influx rate of new comets, the probability of capture and their physical lifetimes. From the discovery rate of active HT comets, their total population can be estimated to be of a few hundreds for perihelion distancesq <2 AU. Randomly-oriented LP comets captured into short-period orbits (orbital periods < 20 yr) show dynamical properties that do not match the observed properties of JF comets, in particular the distribution of their orbital inclinations, so Oort cloud comets can be ruled out as a suitable source for most JF comets. The scope of this presentation is to review the capture process of new comets into HT and short-period orbits, including the possibility that some of them may become sungrazers during their dynamical evolution.


2019 ◽  
Author(s):  
Wayuta Srisang ◽  
Teerawat Sanpasertparnich ◽  
Brent Jacobs ◽  
Stavroula Giannaris ◽  
Corwyn Bruce ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 2236-2245
Author(s):  
Yinglong Wang ◽  
Yigang Liu ◽  
Xiaobin Liu ◽  
Guoxuan Li ◽  
Jianguang Qi ◽  
...  

2014 ◽  
Vol 61 ◽  
pp. 365-368 ◽  
Author(s):  
Chunfeng Song ◽  
Yasuki Kansha ◽  
Masanori Ishizuka ◽  
Qian Fu ◽  
Atsushi Tsutsumi

2016 ◽  
Vol 43 ◽  
pp. 189-197 ◽  
Author(s):  
Alicja Krzemień ◽  
Angelika Więckol-Ryk ◽  
Adam Smoliński ◽  
Aleksandra Koteras ◽  
Lucyna Więcław-Solny
Keyword(s):  

Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 25
Author(s):  
Umberto Battino ◽  
Claudia Lederer-Woods ◽  
Borbála Cseh ◽  
Pavel Denissenkov ◽  
Falk Herwig

The slow neutron-capture process (s-process) efficiency in low-mass AGB stars (1.5 < M/M⊙ < 3) critically depends on how mixing processes in stellar interiors are handled, which is still affected by considerable uncertainties. In this work, we compute the evolution and nucleosynthesis of low-mass AGB stars at low metallicities using the MESA stellar evolution code. The combined data set includes models with initial masses Mini/M⊙=2 and 3 for initial metallicities Z=0.001 and 0.002. The nucleosynthesis was calculated for all relevant isotopes by post-processing with the NuGrid mppnp code. Using these models, we show the impact of the uncertainties affecting the main mixing processes on heavy element nucleosynthesis, such as convection and mixing at convective boundaries. We finally compare our theoretical predictions with observed surface abundances on low-metallicity stars. We find that mixing at the interface between the He-intershell and the CO-core has a critical impact on the s-process at low metallicities, and its importance is comparable to convective boundary mixing processes under the convective envelope, which determine the formation and size of the 13C-pocket. Additionally, our results indicate that models with very low to no mixing below the He-intershell during thermal pulses, and with a 13C-pocket size of at least ∼3 × 10−4 M⊙, are strongly favored in reproducing observations. Online access to complete yield data tables is also provided.


2021 ◽  
Author(s):  
Joshua Morgan ◽  
Benjamin Omell ◽  
Michael Matuszewski ◽  
David Miller ◽  
Muhammad Ismail Shah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document