Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics

2012 ◽  
Vol 22 (21) ◽  
pp. 10709 ◽  
Author(s):  
Brian Seger ◽  
Gao Qing (Max) Lu ◽  
Lianzhou Wang
2018 ◽  
Vol 2 (12) ◽  
pp. 2705-2716 ◽  
Author(s):  
Felipe Sanchez ◽  
Mohammad Hayal Alotaibi ◽  
Davide Motta ◽  
Carine Edith Chan-Thaw ◽  
Andrianelison Rakotomahevitra ◽  
...  

The development of safe and efficient H2 generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution has recently received much attention.


2010 ◽  
Vol 101 (1) ◽  
pp. S53-S58 ◽  
Author(s):  
Jong-Hwan Shin ◽  
Jong Hyun Yoon ◽  
Seung Hoon Lee ◽  
Tai Hyun Park

Energetika ◽  
2016 ◽  
Vol 62 (1-2) ◽  
Author(s):  
Dalius Girdzevičius ◽  
Darius Milčius

Hydrogen is considered an energy vector of the future because of its potential use for clean energy generation. Portable electronic devices can be powered when hydrogen is supplied to fuel cells. In order to avoid massive equipment for hydrogen storage, direct hydrogen production can be achieved on-site during the reaction between metals/metal alloys/metal hydrides and water. Magnesium hydride offers great perspective for widespread applications as its weight yield of hydrogen reaches 6.4% according to the reaction with water and it can even increase to 15.2% if water produced in the fuel cell is used in the reaction again. In the  present work, Mg powder with the  content of Ni was synthesized under low temperature hydrogen plasma conditions changing the DC magnetron current from 0.5 to 1 A. As pure Mg powder was immersed into hydrogen plasma, the simultaneous hydrogenation process was ensured. Nickel was chosen as a catalyst capable to influence the growth of hydride. The process of electric power generation was investigated when reaction between modified Mg powder and water was applied to laboratory-built equipment consisting of a reactor for hydrogen production, gas dryer before H2 introduction to the  fuel cell, fuel cell, load and energy meter. Solutions of acetic acid and sodium chloride were used as promoters during powder-water reactions. The characterisation of predicted magnesium hydride powder was done using scanning electron microscopy, electron dispersive spectroscopy and X-ray diffraction. XRD analysis showed only Mg, MgO and Ni peaks indicating that hydrogen generation during powder-water reaction was evoked because of microgalvanic corrosion at Mg-Ni intersections.


2021 ◽  
Vol 45 ◽  
pp. 101078
Author(s):  
Samuel Eshorame Sanni ◽  
Peter Adeniyi Alaba ◽  
Emeka Okoro ◽  
Moses Emetere ◽  
Babalola Oni ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3258
Author(s):  
Hamed M. Alshammari ◽  
Mohammad Hayal Alotaibi ◽  
Obaid F. Aldosari ◽  
Abdulellah S. Alsolami ◽  
Nuha A. Alotaibi ◽  
...  

The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium–palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 °C led to further decomposition and an improvement in conversion yield to 63%. Dilution of formic acid from 0.5 to 0.2 M improved the decomposition, reaching conversion to 81%. The reported process could potentially be used in commercial applications.


2021 ◽  
Author(s):  
Yusuke Minami ◽  
Yutaka Amao

Formate is attracting attention as a hydrogen carrier because of its low toxicity and easy handling in aqueous solution. In order to utilize formic acid as a hydrogen carrier, a...


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
David Ouellette ◽  
Cynthia Ann Cruickshank ◽  
Edgar Matida

The performance of a new methanol fuel cell that utilizes a liquid formic acid electrolyte, named the formic acid electrolyte-direct methanol fuel cell (FAE-DMFC) is experimentally investigated. This fuel cell type has the capability of recycling/washing away methanol, without the need of methanol-electrolyte separation. Three fuel cell configurations were examined: a flowing electrolyte and two circulating electrolyte configurations. From these three configurations, the flowing electrolyte and the circulating electrolyte, with the electrolyte outlet routed to the anode inlet, provided the most stable power output, where minimal decay in performance and less than 3% and 5.6% variation in power output were observed in the respective configurations. The flowing electrolyte configuration also yielded the greatest power output by as much as 34%. Furthermore, for the flowing electrolyte configuration, several key operating conditions were experimentally tested to determine the optimal operating points. It was found that an inlet concentration of 2.2 M methanol and 6.5 M formic acid, as along with a cell temperature of 52.8 °C provided the best performance. Since this fuel cell has a low optimal operating temperature, this fuel cell has potential applications for handheld portable devices.


Sign in / Sign up

Export Citation Format

Share Document