scholarly journals Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion

2012 ◽  
Vol 22 (43) ◽  
pp. 23181 ◽  
Author(s):  
Wun-Huei Peng ◽  
Yin-Ying Lee ◽  
Connie Wu ◽  
Kevin C.-W. Wu
RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 32183-32188 ◽  
Author(s):  
Zahra Nasresfahani ◽  
Mohammad Zaman Kassaee ◽  
Mohammad Nejati-Shendi ◽  
Esmaiel Eidi ◽  
Qazale Taheri

In this paper, mesoporous silica nanoparticles (MSNs) are introduced as an efficient nanocatalyst for synthesis of β-amino ketones.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2455
Author(s):  
Manuel Pérez-Garnes ◽  
Victoria Morales ◽  
Raul Sanz ◽  
Rafael A. García-Muñoz

Among the different types of nanoparticles used in biomedical applications, Fe nanoparticles and mesoporous siliceous materials have been extensively investigated because of their possible theranostic applications. Here, we present hollow-shell mesoporous silica nanoparticles that encapsulate iron oxide and that are prepared using a drug-structure-directing agent concept (DSDA), composed of the model drug tryptophan modified by carbon aliphatic hydrocarbon chains. The modified tryptophan can behave as an organic template that allows directing the hollow-shell mesoporous silica framework, as a result of its micellisation and subsequent assembly of the silica around it. The one-pot synthesis procedure facilitates the incorporation of hydrophobically stabilised iron oxide nanoparticles into the hollow internal silica cavities, with the model drug tryptophan in the shell pores, thus enabling the incorporation of different functionalities into the all-in-one nanoparticles named mesoporous silica nanoparticles containing magnetic iron oxide (Fe3O4@MSNs). Additionally, the drug loading capability and the release of tryptophan from the silica nanoparticles were examined, as well as the cytostaticity and cytotoxicity of the Fe3O4@MSNs in different colon cancer cell lines. The results indicate that Fe3O4@MSNs have great potential for drug loading and drug delivery into specific target cells, thereby overcoming the limitations associated with conventional drug formulations, which are unable to selectively reach the sites of interest.


2018 ◽  
Vol 54 (84) ◽  
pp. 11921-11924 ◽  
Author(s):  
Yu Zhu ◽  
Wenhai Lin ◽  
Xin Wang ◽  
Wei Zhang ◽  
Li Chen ◽  
...  

For the first time, we have obtained a multifunctional nanoplatform (MSN-BDP-PEG) containing disulfide bonds, BODIPY 5 and PEG-CHO via a one-pot Passerini reaction for chemotherapy, phototherapy and NIRF imaging.


2019 ◽  
Vol 16 (1) ◽  
pp. 136-144 ◽  
Author(s):  
Vajihe Nejadshafiee ◽  
Hossein Naeimi

Aim and Objective: A novel and convenient transformation for the synthesis of benzodiazepines has been developed via catalytic cyclization reaction using ionic liquid supported on mesoporous silica nanoparticles- imprinted iron metal (Fe-MCM-41-IL) as a recyclable catalyst under mild conditions. Materials and Methods: For preparation of Fe-MCM-41-IL, FeCl3·6H2O was added to a mixture of distilled water, CTAB and NaOH aqueous solution. The tetraethyl orthosilicate was dropped into the solution under stirring. The product was separated, washed, and dried. The solid product was collected and calcined. Then, to a solution of β-hydroxy-1,2,3-triazole in toluene, 3-chloropropyltrimethoxysilane was added and the mixture was refluxed. The Conc. H2SO4 was added dropwise into the above solution and stirred. For immobilization of IL onto Fe-MCM-41, the solution IL was added to Fe-MCM-41 and was refluxed for the production of the Fe- MCM-41. Following this, benzodiazepines were synthesized using Fe-MCM-41-IL as a catalyst. </P><P> Results: The Fe-MCM-41-IL was prepared and characterized by a different analysis. The activity of the prepared catalyst as the above described was tested in the model reaction of o-phenyldiamine, tetronic acid, and different aldehydes under room temperature in ethanol solvent. Also, the catalyst could be recovered for five cycles. Conclusion: We developed a novel nanocatalyst for the synthesis of benzodiazepines in excellent yields. Fe- MCM-41-IL as a catalyst has advantages such as: environmental friendliness, reusability and easy recovery of the catalyst using an external magnet.


Sign in / Sign up

Export Citation Format

Share Document