Interaction of long telomeric DNAs with macrocyclic hexaoxazole as a G-quadruplex ligand

MedChemComm ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 260-264 ◽  
Author(s):  
Keisuke Iida ◽  
Gen Tsubouchi ◽  
Takahiro Nakamura ◽  
Satoki Majima ◽  
Hiroyuki Seimiya ◽  
...  

The interactions of long telomeric DNAs, which mimic telomeres in living cells, with a macrocyclic hexaoxazole ligand L2H2-6OTD (2) were investigated by means of electrophoresis mobility shift assay, circular dichroism (CD) titration analysis, and DNA melting measurements.

2015 ◽  
Vol 43 (18) ◽  
pp. 8884-8897 ◽  
Author(s):  
Elena Tosoni ◽  
Ilaria Frasson ◽  
Matteo Scalabrin ◽  
Rosalba Perrone ◽  
Elena Butovskaya ◽  
...  

Abstract Folding of the LTR promoter into dynamic G-quadruplex conformations has been shown to suppress its transcriptional activity in HIV-1. Here we sought to identify the proteins that control the folding of this region of proviral genome by inducing/stabilizing G-quadruplex structures. The implementation of electrophorethic mobility shift assay and pull-down experiments coupled with mass spectrometric analysis revealed that the cellular protein nucleolin is able to specifically recognize G-quadruplex structures present in the LTR promoter. Nucleolin recognized with high affinity and specificity the majority, but not all the possible G-quadruplexes folded by this sequence. In addition, it displayed greater binding preference towards DNA than RNA G-quadruplexes, thus indicating two levels of selectivity based on the sequence and nature of the target. The interaction translated into stabilization of the LTR G-quadruplexes and increased promoter silencing activity; in contrast, disruption of nucleolin binding in cells by both siRNAs and a nucleolin binding aptamer greatly increased LTR promoter activity. These data indicate that nucleolin possesses a specific and regulated activity toward the HIV-1 LTR promoter, which is mediated by G-quadruplexes. These observations provide new essential insights into viral transcription and a possible low mutagenic target for antiretroviral therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Elena V. Chikhirzhina ◽  
Starkova J. Tatiana ◽  
Alexander M. Polyanichko

Interaction of HMGB1 nonhistone chromosomal protein with DNA was studied using circular dichroism spectroscopy and thermal denaturation of DNA. Melting DNA in the complex was shown to be a biphasic process. The characteristic melting temperatures of unbound DNA and the DNA bound to HMGB1 in 0.25 mM EDTA solutions were found to beTmI=44.0±0.5°C andTmII=62.0±1°C, respectively. It was shown that the binding of the HMGB1 molecule affects the melting of the DNA region approximately 30 b.p. long.


2001 ◽  
Vol 7 (6) ◽  
pp. 976-981 ◽  
Author(s):  
T.I. Karu ◽  
S.F. Kolyakov ◽  
L.V. Pyatibrat ◽  
E.L. Mikhailov ◽  
O.N. Kompanets

Sign in / Sign up

Export Citation Format

Share Document