Homogeneous catalytic oxidation of secondary alcohols to ketones by molecular oxygen under mild conditions

Author(s):  
Thomas F. Blackburn ◽  
Jeffrey Schwartz
2015 ◽  
Vol 13 (28) ◽  
pp. 7599-7613 ◽  
Author(s):  
H. Iida ◽  
Y. Imada ◽  
S.-I. Murahashi

Using simple riboflavin related compounds as biomimetic catalysts, catalytic oxidation of various substrates with hydrogen peroxide or molecular oxygen can be performed selectively under mild conditions. The principle of these reactions is fundamental and will provide a wide scope for environmentally benign future practical methods.


2019 ◽  
Vol 8 (5) ◽  
pp. 380-389
Author(s):  
Ikram EL Amrani ◽  
Ahmed Atlamsani

A commercial montmorillonite clay catalyst, K-10 montmorillonite, was tested for catalytic oxidation of aldehydes in the presence of molecular oxygen under mild conditions. K-10 montmorillonite catalysed the oxidation of aldehydes with good activity and excellent selectivity toward the formation of the corresponding acids. The effects of the amount of catalyst, temperature and solvent on the catalytic activity were investigated. Remarkably, this catalyst was reusable without any appreciable loss in activity and selectivity.


1998 ◽  
Vol 76 (10) ◽  
pp. 1467-1473 ◽  
Author(s):  
Veranja Karunaratne ◽  
David Dolphin

A variety of substituted 2-methylpyrroles (3-8) were oxidized using the metalloporphyrin catalysts iron(III) meso-tetra(2,6-dichloro-3-sulphonatophenyl)-β-octachloroporphyrin chloride 1 and iron(III) meso-tetra(2,6-dichlorophenyl)-β-octachloroporphyrin chloride 2 under very mild conditions. Treatment of the resulting allylic alcohols 3a-8a with α-free pyrroles 9 and 10 resulted in a very efficient synthesis of the corresponding dipyrromethanes 3b-8b and 3c-8c. Furthermore, the above allylic alcohols when treated with furfurylamine produced the novel (2-furylmethyl)-2-pyrrolylmethylamines 3d-8d.Key words: catalytic oxidation, metalloporphyrins, pyrroles, dipyrromethanes, polyhalogenated porphyrins.


Author(s):  
Stefano Colonna ◽  
Nicoletta Gaggero ◽  
Fernando Montanari ◽  
Gianluca Pozzi ◽  
Silvio Quici

2021 ◽  
Vol 903 ◽  
pp. 143-148
Author(s):  
Svetlana Cornaja ◽  
Svetlana Zhizhkuna ◽  
Jevgenija Vladiko

Supported 3wt%Pd/α-Al₂O₃ catalyst was tested in selective oxidation of 1,2-propanediol by molecular oxygen. It was found that the catalyst is active in an alkaline water solution. Lactic acid was obtained as the main product of the reaction. Influence of different reaction conditions on 1,2-PDO conversion and oxidation process selectivity was studied. Partial kinetic orders of the reaction with respect to 1,2-propanediol, c0(NaOH), p(O2), n(1,2-PDO)/n(Pd)) were determined and an experimental kinetic model of the catalytic oxidation reaction was obtained. Activation energy of the process was calculated and was found to be about 53 ± 5 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document