Quantification of arsenic(iii) in aqueous media using a novel hybrid platform comprised of radially porous silica particles and a gold thin film

2014 ◽  
Vol 6 (17) ◽  
pp. 7054-7061 ◽  
Author(s):  
Y. Choi ◽  
H. Kwak ◽  
S. Hong

A highly sensitive and anion-selective method for the detection of arsenic based on a signal-enhanced SPR sensor using a novel hybrid platform of radially porous silica particles and a gold thin film.

Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hubert Brueckl ◽  
Astrit Shoshi ◽  
Stefan Schrittwieser ◽  
Barbara Schmid ◽  
Pia Schneeweiss ◽  
...  

AbstractMultifunctional nanoparticles are discussed as versatile probes for homogeneous immunoassays for in-vitro diagnostics. Top-down fabrication allows to combine and tailor magnetic and plasmonic anisotropic properties. The combination of nanoimprint lithography, thin film deposition, and lift-off processing provides a top-down fabrication platform, which is both flexible and reliable. Here, we discuss the material compositions and geometrical designs of monodisperse multicomponent nanoparticles and their consequences on optical and magnetic properties. The rotational hydrodynamics of nanoparticles is measured and considered under the influence of magnetic shape anisotropy in the framework of the Stoner-Wohlfarth theory. The plasmon-optical properties are explained by discrete-dipole finite-element simulations. Rotational dynamical measurements of imprinted nanoprobes for two test proteins demonstrate the applicability as highly sensitive biomolecular nanoprobes.


2021 ◽  
Vol 1098 (6) ◽  
pp. 062062
Author(s):  
R Fahdiran ◽  
I Sugihartono ◽  
E Handoko ◽  
E Budi ◽  
A B Susila ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 75
Author(s):  
Preeti S. Shinde ◽  
Pradnya S. Suryawanshi ◽  
Kanchan K. Patil ◽  
Vedika M. Belekar ◽  
Sandeep A. Sankpal ◽  
...  

Porous silica particles have shown applications in various technological fields including their use as catalyst supports in heterogeneous catalysis. The mesoporous silica particles have ordered porosity, high surface area, and good chemical stability. These interesting structural or textural properties make porous silica an attractive material for use as catalyst supports in various heterogeneous catalysis reactions. The colloidal nature of the porous silica particles is highly useful in catalytic applications as it guarantees better mass transfer properties and uniform distribution of the various metal or metal oxide nanocatalysts in solution. The catalysts show high activity, low degree of metal leaching, and ease in recycling when supported or immobilized on porous silica-based materials. In this overview, we have pointed out the importance of porous silica as catalyst supports. A variety of chemical reactions catalyzed by different catalysts loaded or embedded in porous silica supports are studied. The latest reports from the literature about the use of porous silica-based materials as catalyst supports are listed and analyzed. The new and continued trends are discussed with examples.


2021 ◽  
Vol 11 (7) ◽  
pp. 2963
Author(s):  
Nur Alia Sheh Omar ◽  
Yap Wing Fen ◽  
Irmawati Ramli ◽  
Umi Zulaikha Mohd Azmi ◽  
Hazwani Suhaila Hashim ◽  
...  

A novel vanadium–cellulose composite thin film-based on angular interrogation surface plasmon resonance (SPR) sensor for ppb-level detection of Ni(II) ion was developed. Experimental results show that the sensor has a linear response to the Ni(II) ion concentrations in the range of 2–50 ppb with a determination coefficient (R2) of 0.9910. This SPR sensor can attain a maximum sensitivity (0.068° ppb−1), binding affinity constant (1.819 × 106 M−1), detection accuracy (0.3034 degree−1), and signal-to-noise-ratio (0.0276) for Ni(II) ion detection. The optical properties of thin-film targeting Ni(II) ions in different concentrations were obtained by fitting the SPR reflectance curves using the WinSpall program. All in all, the proposed Au/MPA/V–CNCs–CTA thin-film-based surface plasmon resonance sensor exhibits better sensing performance than the previous film-based sensor and demonstrates a wide and promising technology candidate for environmental monitoring applications in the future.


2001 ◽  
Vol 92 (1-3) ◽  
pp. 156-160 ◽  
Author(s):  
Korbinian Kunz ◽  
Peter Enoksson ◽  
Göran Stemme

2004 ◽  
Vol 43 (No. 8B) ◽  
pp. L1078-L1080
Author(s):  
Ilsin An ◽  
Deokkyeong Seong ◽  
Hyekeun Oh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document