Sensitive and rapid biosensor for the determination of rhamnose based on the catalytic effect of the oxidation of calcein by H2O2

2014 ◽  
Vol 6 (21) ◽  
pp. 8779-8784
Author(s):  
Jia-Ming Liu ◽  
Zhen-bo Liu ◽  
Qitong Huang ◽  
Xiaofeng Lin

We report a new catalytic biosensor for the detection of rhamnose (Rha) based on combining the high sensitivity of a fluorescence method with the high selectivity of a catalytic reaction.

2016 ◽  
Vol 8 (30) ◽  
pp. 5984-5993 ◽  
Author(s):  
Guirong Li ◽  
Jiekang Li ◽  
Qian Han

(1) Extracting and purifying uranium in complex samples by dCPE with [UO22+–SA1]. (2) Detecting uranium super sensitively by a photocatalytic RF method with [UO22+–SA2]. (3) Coupling with separation, purification and analysis procedures exhibited a number of advantages, including high selectivity, high sensitivity and low cost.


2012 ◽  
Vol 554-556 ◽  
pp. 1999-2005
Author(s):  
Zhi Rong Zhou ◽  
Qun Wang ◽  
Shu Yuan Zhang

A spectrophotometric method for the determination of ruthenium (III) is described, based on its catalytic effect on the oxidation reaction of 2-[(3,5-dibromo-2-pyridy)azo]-5-diethylaminophenol (3,5-diBr-PADAP) with potassium periodate in 0.008 mol/L sodium hydroxide medium and in the presence of OP emulsifier (p-iso-octyl phenoxy polyethoxy ethanol) at 100 °C. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 530 nm for the catalytic reaction of 3,5-diBr-PADAP. The calibration curve for the recommended method was linear in the concentration range over 0.04 µg/L–1.0 µg/L and the detection limit of the method for Ru (III) is 0.012 µg/L. The influence of the factors such as acidity, concentration of reactants, reaction time, temperature and co-existing ions on the reaction is discussed. The optimum conditions of reaction are established and some kinetic parameters are determined. The apparent activation energy of catalytic reaction is 100.48 kJ/mol. The relative standard deviation for the determination of ruthenium (III) at the concentration of 0.02 µg/25mL is calculated to be 2.30 % (n=11). In combination with distilled separation, the method has been successfully applied for the determination of trace ruthenium (III) in some ores and metallurgy products with the relative standard deviations (RSD) over 1.8 %–2.9 % and the recovery over 98.1 %–103.1 %.


2013 ◽  
Vol 781-784 ◽  
pp. 93-98
Author(s):  
Su Ping Chen ◽  
Zhi Rong Zhou ◽  
Cheng Jie Cai ◽  
Yan Ling Fang ◽  
Zhi Cheng Fu ◽  
...  

A spectrophotometric method for the determination of ruthenium (III) is described, based on its catalytic effect on the oxidation reaction of switerland pigment with potassium periodate in 0.016 mol/L of hydrogen chloride medium and in the presence of OP emulsifier (p-iso-octyl phenoxy polyethoxy ethanol) at 100 °C. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 608 nm for the catalytic reaction of switerland pigment. The calibration curve for the recommended method was linear in the concentration range over 0.041.0 μg/L and the detection limit of the method for Ru (III) is 0.012 μg/L. The influence of the factors such as acidity, concentration of reactants, reaction time, temperature and co-existing ions on the reaction is discussed. The optimum conditions of reaction are established and some kinetic parameters are determined. The apparent activation energy of catalytic reaction is 100.48 kJ/mol. The relative standard deviation for the determination of ruthenium (III) at the concentration of 0.02 μg/25 mL is calculated to be 2.3 % (n=11). In combination with distilled separation, the method has been successfully applied for the determination of trace ruthenium (III) in some ores and metallurgy proucts with the relative standard deviations (RSD) over 2.9 %3.8 % and the recovery over 98.2 %-103.6 %.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Z. H. Ibupoto ◽  
Syed M. Usman Ali ◽  
K. Khun ◽  
Magnus Willander

Well controlled in length and highly aligned ZnO nanorods were grown on the gold-coated glass substrate by hydrothermal growth method. ZnO nanorods were functionalised with selective thallium (I) ion ionophore dibenzyldiaza-18-crown-6 (DBzDA18C6). The thallium ion sensor showed wide linear potentiometric response to thallium (I) ion concentrations ( M to  M) with high sensitivity of 36.87 ± 1.49 mV/decade. Moreover, thallium (I) ion demonstrated fast response time of less than 5 s, high selectivity, reproducibility, storage stability, and negligible response to common interferents. The proposed thallium (I) ion-sensor electrode was also used as an indicator electrode in the potentiometric titration, and it has shown good stoichiometric response for the determination of thallium (I) ion.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1632 ◽  
Author(s):  
Nieves Baenas ◽  
Francisco J. Salar ◽  
Raúl Domínguez-Perles ◽  
Cristina García-Viguera

A new method using ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) methodology was developed for the determination of ascorbic acid (AA) and dehydroascorbic acid (DHAA) contents in liquid and solid vegetable samples. The advantages of this method are speed, high sensitivity and practical application. In accordance with these advantages, the present method allows the simultaneous determination of AA and DHAA without previous reduction/derivatization of DHAA and without the use of internal standards in the samples. This is of high interest in routine analysis, providing a simpler sample preparation, as well as enhanced accuracy and robustness. Its validation included selectivity, sensitivity and linearity, precision and accuracy, matrix effect, and recovery. The results showed high selectivity and sensitivity, with calibration curves ranging from 10 to 500 ng mL−1 and from 50 to 500 ng mL−1 for AA and DHAA, respectively. Appropriate dilutions for each sample are necessary to avoid the matrix effect with accepted recoveries.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 719 ◽  
Author(s):  
Aline Romero-Natale ◽  
Ilaria Palchetti ◽  
Mayra Avelar ◽  
Enrique González-Vergara ◽  
José Garate-Morales ◽  
...  

A spectrophotometric method for the determination of glyphosate based on the monitoring of a complex formation between bis 5-phenyldipyrrinate of nickel (II) and the herbicide was developed. The method showed a short response time (10 s), high selectivity (very low interference from other pesticides and salts), and high sensitivity (LOD 2.07 × 10−7 mol/L, LOQ 9.87 × 10−7 mol/L, and a Kd from 1.75 × 10−6 to 6.95 × 10−6 mol/L). The Job plot showed that complex formation occurs with a 1:1 stoichiometry. The method was successfully applied in potable, urban, groundwater, and residual-treated water samples, showing high precision (0.34–2.9%) and accuracy (87.20–119.04%). The structure of the complex was elucidated through theoretical studies demonstrating that the nickel in the bis 5-phenyldipyrrinate forms a distorted octahedral molecular geometry by expanding its coordination number through one bond with the nitrogen and another with the oxygen of the glyphosate’ carboxyl group, at distances between 1.89–2.08 Å.


2019 ◽  
Vol 85 (2) ◽  
pp. 12-16
Author(s):  
I. V. Saunina ◽  
E. N. Gribanov ◽  
E. R. Oskotskaya

The sorption of Hg (II), Cd (II), and As (III) by natural aluminosilicate is studied. It is shown that the mineral absorbs those toxicants in a rather wide pH range, quantitative extraction of analytes being achieved in a neutral or close to neutral medium (pH values range within 7.0 - 8.0; 6.3 - 7.5; 7.4 - 8.5 for Hg (II), As (III), and Cd (II), respectively). The effect of the time of phase contact on the degree of extraction of elements is shown. The sorption capacity of the mineral in optimal conditions of the medium acidity (0.06 mmol/g for mercury, 0.31 mmol/g for cadmium, and 0.52 mmol/g for arsenic) is determined. The distribution coefficients attain values of aboutnX 103-nX 104. A new combined method for determination of Hg (II), Cd (II), and As (III) in natural and waste water is developed and tested. The method consists in a preliminary group sorption concentration of the analytes by aluminosilicate, desorption of the analytes from the surface of the mineral and their subsequent atomic absorption determination. The correctness of the method is verified in analysis of spiked samples. The method is easy to use and exhibits high sensitivity, reproducibility and accuracy of analyte determination. The relative standard deviation does not exceed 0.13. Economic availability and possibility of using domestic sorption materials are the important advantages of the proposed procedure which can be used in the practice of laboratories monitoring the quality and safety of environmental objects.


Sign in / Sign up

Export Citation Format

Share Document