Gold-nanoparticle, functionalized-porous-polymer monolith enclosed in capillary for on-column SERS detection

2015 ◽  
Vol 7 (4) ◽  
pp. 1349-1357 ◽  
Author(s):  
Yingcheng Pan ◽  
Xuan Wang ◽  
Han Zhang ◽  
Yan Kang ◽  
Ting Wu ◽  
...  

Gold nanoparticles functionalized porous polymer monoliths were developed via on-site synthesis method and enclosed in silica capillary as sensitive, uniform, and stable surface-enhanced Raman scattering (SERS) substrates.

NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850053 ◽  
Author(s):  
Hua-Xiang Chen ◽  
Yu-Ting Wang ◽  
Ting-Ting You ◽  
Jin Zhai ◽  
Peng-Gang Yin

Novel surface-enhanced Raman scattering (SERS) substrates with stable and recyclable properties have been prepared by assembling gold nanoparticles-loaded PET (AuNPs/PET) nanocomposite superhydrophobic surfaces. After a physical vapor deposition process, the AuNPs/PET surfaces with vast plasmonic “hot spots” showed superhydrophobic properties, and it can hold target molecules droplets for rapid SERS detection. From blown off droplets and rinsed substrates with water after detection, we found that no probe molecules remained on the surfaces from Raman spectra. The prepared substrates were not contaminated in the detection process. Furthermore, the new SERS substrates were used for rapidly detecting droplets of crystal violet (CV) and the lowest detection concentration was about [Formula: see text] M. The as-prepared AuNPs/PET substrates also have good performance in terms of reproducibility and recyclability.


2014 ◽  
Vol 50 (66) ◽  
pp. 9409-9412 ◽  
Author(s):  
Sujuan Ye ◽  
Yanying Wu ◽  
Wen Zhang ◽  
Na Li ◽  
Bo Tang

A sensitive surface-enhanced Raman scattering (SERS) detection system is developed for proteins and nucleic acids based on a triple-helix molecular switch for multiple cycle signal amplification.


2016 ◽  
Vol 18 (14) ◽  
pp. 9405-9411 ◽  
Author(s):  
C. Awada ◽  
J. Plathier ◽  
C. Dab ◽  
F. Charra ◽  
L. Douillard ◽  
...  

The need for a dedicated spectroscopic technique with nanoscale resolution to characterize SERS substrates pushed us to develop a proof of concept of a functionalized tip–surface enhanced Raman scattering (FTERS) technique.


2016 ◽  
Vol 18 (1-2) ◽  
Author(s):  
Mohammad Salehi ◽  
Angela Hamann-Steinmeier

AbstractSurface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique, which is used in the areas of medical diagnostics. This technique use the advantages of biofunctionalized nanoparticles (NPs) for imaging and quantifying of target molecules such as proteins in assays, cells and tissues. The lack of reliability and reproducibility of the results are major challenges in the application of diagnostics based of SERS substrates. The biofunction and success of nanomedical tasks depends on the quality of each involved element like antibodies (IgGs) and nanostructures before, during and after preparation or conjunction with nanoparticles. This short review summarizes current designs of different SERS substrates and highlights the improvement of particularly simple and gentle conjugation methods for targeting research with SERS labels.


Sign in / Sign up

Export Citation Format

Share Document