scholarly journals Cell-derived matrices for tissue engineering and regenerative medicine applications

2015 ◽  
Vol 3 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Lindsay E. Fitzpatrick ◽  
Todd C. McDevitt

This review discusses the development and application of cell-derived matrices (CDM) in cell biology, tissue engineering and regenerative medicine.

2021 ◽  
Vol 1 (19) ◽  
pp. 36-38
Author(s):  
D.V. Petrova ◽  
I.V. Koshlan ◽  
A.N. Nechaev

Currently, one of the rapidly developing applications of polymer matrices, or scaffolds, is tissue engineering. The usage of ion-track technologies to create scaffolds for the cultivation of various cell populations can open up new opportunities in fundamental cell biology and practical regenerative medicine.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2680
Author(s):  
Elham Pishavar ◽  
Fatemeh Khosravi ◽  
Mahshid Naserifar ◽  
Erfan Rezvani Ghomi ◽  
Hongrong Luo ◽  
...  

Regenerative medicine seeks to assess how materials fundamentally affect cellular functions to improve retaining, restoring, and revitalizing damaged tissues and cancer therapy. As potential candidates in regenerative medicine, hydrogels have attracted much attention due to mimicking of native cell-extracellular matrix (ECM) in cell biology, tissue engineering, and drug screening over the past two decades. In addition, hydrogels with a high capacity for drug loading and sustained release profile are applicable in drug delivery systems. Recently, self-healing supramolecular hydrogels, as a novel class of biomaterials, are being used in preclinical trials with benefits such as biocompatibility, native tissue mimicry, and injectability via a reversible crosslink. Meanwhile, the localized therapeutics agent delivery is beneficial due to the ability to deliver more doses of therapeutic agents to the targeted site and the ability to overcome post-surgical complications, inflammation, and infections. These highly potential materials can help address the limitations of current drug delivery systems and the high clinical demand for customized drug release systems. To this aim, the current review presents the state-of-the-art progress of multifunctional and self-healable hydrogels for a broad range of applications in cancer therapy, tissue engineering, and regenerative medicine.


2019 ◽  
Vol 30 (2) ◽  
pp. 50-56 ◽  
Author(s):  
Q.Z. Zhang ◽  
C. Chen ◽  
M.B. Chang ◽  
R.M. Shanti ◽  
S.B. Cannady ◽  
...  

Tissue injuries in the oral and maxillofacial structures secondary to trauma, warfare, ablative cancer, and benign tumor surgery result in significant losses of speech, masticatory and swallowing functions, aesthetic deformities, and overall psychological stressors and compromise. Optimal oral rehabilitation remains a formidable challenge and an unmet clinical need due to the influence of multiple factors related to the physiologic limitations of tissue repair, the lack of site and function-specific donor tissues and constructs, and an integrated team of multidisciplinary professionals. The advancements in stem cell biology, biomaterial science, and tissue engineering technologies, particularly the 3-dimensional bioprinting technology, together with digital imaging and computer-aided design and manufacturing technologies, have paved the path for personalized/precision regenerative medicine. At the University of Pennsylvania, we have launched the initiative to integrate multidisciplinary health professionals and translational/clinical scientists in medicine, dentistry, stem cell biology, tissue engineering, and regenerative medicine to develop a comprehensive, patient-centered approach for precision and personalized reconstruction, as well as oral rehabilitation of patients sustaining orofacial tissue injuries and defects, especially oral cancer patients.


2015 ◽  
Vol 6 (5) ◽  
pp. 291-298
Author(s):  
Barbara Różalska ◽  
Bartłomiej Micota ◽  
Małgorzata Paszkiewicz ◽  
Beata Sadowska

2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2015 ◽  
Vol 21 (12) ◽  
pp. 1506-1516 ◽  
Author(s):  
Nicolas Hanauer ◽  
Pierre Latreille ◽  
Shaker Alsharif ◽  
Xavier Banquy

Sign in / Sign up

Export Citation Format

Share Document