Surface charging behavior of nanoparticles by considering site distribution and density, dielectric constant and pH changes – a Monte Carlo approach

2015 ◽  
Vol 17 (6) ◽  
pp. 4346-4353 ◽  
Author(s):  
Arnaud Clavier ◽  
Marianne Seijo ◽  
Fabrice Carnal ◽  
Serge Stoll

Monte Carlo simulations are used to describe the charging behavior of metal oxide nanoparticles thus enabling a novel and original approach to predict nanoparticle reactivity and the possible interactions with biological and environmental molecules.

2021 ◽  
Author(s):  
Thomas Schneider ◽  
Anna Mittag ◽  
Martin Westermann ◽  
Michael Glei

The properties of orally ingested nanoparticles can be influenced by the conditions prevailing in the digestive tract. The influence of the pH value on the fate of metal oxide nanoparticles was demonstrated using a simplified digestion approach.


Author(s):  
Sagadevan Suresh ◽  
Selvaraj Vennila ◽  
J. Anita Lett ◽  
Is Fatimah ◽  
Faruq Mohammad ◽  
...  

2021 ◽  
Vol 23 (8) ◽  
Author(s):  
Eliecer Peláez Sifonte ◽  
Fidel Antonio Castro-Smirnov ◽  
Argenis Adrian Soutelo Jimenez ◽  
Héctor Raúl González Diez ◽  
Fernando Guzmán Martínez

Author(s):  
Sung-Hyun Kim ◽  
DongHan Lee ◽  
JinHee Lee ◽  
Jun-Young Yang ◽  
JiHyun Seok ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. C. Angastiniotis ◽  
S. Christopoulos ◽  
K. C. Petallidou ◽  
A. M. Efstathiou ◽  
A. Othonos ◽  
...  

AbstractA bulk scale process is implemented for the production of nanostructured film composites comprising unary or multi-component metal oxide nanoparticles dispersed in a suitable polymer matrix. The as-received nanoparticles, namely Al$$_2$$ 2 O$$_3$$ 3 , SiO$$_2$$ 2 and TiO$$_2$$ 2 and binary combinations, are treated following specific chemical and mechanical processes in order to be suspended at the optimal size and composition. Subsequently, a polymer extrusion technique is employed for the fabrication of each film, while the molten polymer is mixed with the treated metal oxide nanoparticles. Transmission and reflection measurements are performed in order to map the optical properties of the fabricated, nanostructured films in the UV, VIS and IR. The results substantiate the capability of the overall methodology to regulate the optical properties of the films depending on the type of nanoparticle formation which can be adjusted both in size and composition.


2021 ◽  
Vol 394 (10) ◽  
pp. 1991-2002
Author(s):  
Junchao Luo ◽  
Yin Zhang ◽  
Senbo Zhu ◽  
Yu Tong ◽  
Lichen Ji ◽  
...  

AbstractThe current understanding of osteoarthritis is developing from a mechanical disease caused by cartilage wear to a complex biological response involving inflammation, oxidative stress and other aspects. Nanoparticles are widely used in drug delivery due to its good stability in vivo and cell uptake efficiency. In addition to the above advantages, metal/metal oxide NPs, such as cerium oxide and manganese dioxide, can also simulate the activity of antioxidant enzymes and catalyze the degradation of superoxide anions and hydrogen peroxide. Degrading of metal/metal oxide nanoparticles releases metal ions, which may slow down the progression of osteoarthritis by inhibiting inflammation, promoting cartilage repair and inhibiting cartilage ossification. In present review, we focused on recent research works concerning osteoarthritis treating with metal/metal oxide nanoparticles, and introduced some potential nanoparticles that may have therapeutic effects.


Sign in / Sign up

Export Citation Format

Share Document