scholarly journals In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc–magnesium–aluminium (ZMA) alloys using novel time-lapse microscopy

2015 ◽  
Vol 180 ◽  
pp. 361-379 ◽  
Author(s):  
James Sullivan ◽  
Nathan Cooze ◽  
Callum Gallagher ◽  
Tom Lewis ◽  
Tomas Prosek ◽  
...  

In situtime-lapse optical microscopy was used to examine the microstructural corrosion mechanisms in three zinc–magnesium–aluminium (ZMA) alloy coated steels immersed in 1% NaCl pH 7. Preferential corrosion of MgZn2lamellae within the eutectic phases was observed in all the ZMA alloys followed by subsequent dissolution of Zn rich phases. The total extent and rate of corrosion, measured using time-lapse image analysis and scanning vibrating electrode technique (SVET) estimated mass loss, decreased as Mg and Al alloying additions were increased up to a level of 3 wt% Mg and 3.7 wt% Al. This was probably due to the increased presence of MgO and Al2O3at the alloy surface retarding the kinetics of cathodic oxygen reduction. The addition of 1 × 10−2mol dm−3Na3PO4to 1% NaCl pH 7 had a dramatic influence on the corrosion mechanism for a ZMA with passivation of anodic sites through phosphate precipitation observed using time-lapse image analysis. Intriguing rapid precipitation of filamentous phosphate was also observed and it is postulated that these filaments nucleate and grow due to super saturation effects. Polarisation experiments showed that the addition of 1 × 10−2mol dm−3Na3PO4to the 1% NaCl electrolyte promoted an anodic shift of 50 mV in open circuit potential for the ZMA alloy with a reduction in anodic current of 2.5 orders of magnitude suggesting that it was acting primarily as an anodic inhibitor supporting the inferences from the time-lapse investigations. These phosphate additions resulted in a 98% reduction in estimated mass loss as measured by SVET demonstrating the effectiveness of phosphate inhibitors for this alloy system.

2019 ◽  
Vol 9 (4) ◽  
pp. 706 ◽  
Author(s):  
Junlei Tang ◽  
Junyang Li ◽  
Hu Wang ◽  
Yingying Wang ◽  
Geng Chen

The acoustic emission (AE) technique was applied to monitor the pitting corrosion of carbon steel in NaHCO3 + NaCl solutions. The open circuit potential (OCP) measurement and corrosion morphology in-situ capturing using an optical microscope were conducted during AE monitoring. The corrosion micromorphology was characterized with a scanning electron microscope (SEM). The propagation behavior and AE features of natural pitting on carbon steel were investigated. After completion of the signal processing, including pre-treatment, shape preserving interpolation, and denoising, for raw AE waveforms, three types of AE signals were classified in the correlation diagrams of the new waveform parameters. Finally, a 2D pattern recognition method was established to calculate the similarity of different continuous AE graphics, which is quite effective to distinguish the localized corrosion from uniform corrosion.


Nanoscale ◽  
2011 ◽  
Vol 3 (6) ◽  
pp. 2481 ◽  
Author(s):  
Na Wu ◽  
Xingfei Zhou ◽  
Daniel M. Czajkowsky ◽  
Ming Ye ◽  
Dongdong Zeng ◽  
...  

2007 ◽  
Vol 7 (10) ◽  
pp. 2080-2087 ◽  
Author(s):  
Alexandre Caillet ◽  
Alain Rivoire ◽  
Jean-Marc Galvan ◽  
François Puel ◽  
Gilles Fevotte

Author(s):  
Junlei Tang ◽  
Junyang Li ◽  
Hu Wang ◽  
Yingying Wang ◽  
Geng Chen

The acoustic emission (AE) technique was applied to monitor the pitting corrosion of carbon steel in NaHCO3 + NaCl solutions. The open circuit potential (OCP) measurement and the corrosion morphology in-situ capturing using optical microscope were conducted during AE monitoring. The corrosion micromorphology was characterized with scanning electron microscope (SEM). The propagation behavior and AE features of natural pitting on carbon steel were investigated. After the performing of signal processing including pre-treatment, shape preserving interpolation and denoising for raw AE waveforms, three types of AE signals can be classified in the correlation diagrams of new waveform parameters. Finally, a 2D pattern recognition method was established to calculate the similarity of different continuous AE graphics, which is quite effective to distinguish the localized corrosion from uniform corrosion.


Sign in / Sign up

Export Citation Format

Share Document