Molecular modelling studies of sirtuin 2 inhibitors using three-dimensional structure–activity relationship analysis and molecular dynamics simulations

2015 ◽  
Vol 11 (3) ◽  
pp. 723-733 ◽  
Author(s):  
Yu-Chung Chuang ◽  
Ching-Hsun Chang ◽  
Jen-Tai Lin ◽  
Chia-Ning Yang

In this work, a CoMFA model and molecular dynamics simulations provide guidelines for drug development of SIRT2 inhibitors.

MedChemComm ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 101-115 ◽  
Author(s):  
Shanshan Huang ◽  
Kairui Feng ◽  
Yujie Ren

Reliable QSAR models for quinazolinones were constructed and eight novel MMP-13 inhibitors with higher predictive activity were identified.


2020 ◽  
Author(s):  
Sandro Bottaro ◽  
Giovanni Bussi ◽  
Kresten Lindorff-Larsen

The 5' untranslated region (UTR) of SARS-CoV-2 genome is a conserved, functional and structured genomic region consisting of several RNA stem-loop elements. While the secondary structure of such elements has been determined experimentally, their three-dimensional structure is not known yet. Here, we predict structure and dynamics of five RNA stem-loops in the 5'-UTR of SARS-CoV-2 by extensive atomistic molecular dynamics simulations, more than 0.5ms of aggregate simulation time, in combination with enhanced sampling techniques. We compare simulations with available experimental data, describe the resulting conformational ensembles, and identify the presence of specific structural rearrengements in apical and internal loops that may be functionally relevant. Our atomic-detailed structural predictions reveal a rich dynamics in these RNA molecules, could help the experimental characterisation of these systems, and provide putative three-dimensional models for structure-based drug design studies.


1998 ◽  
Vol 12 (04) ◽  
pp. 115-122 ◽  
Author(s):  
Sakamoto Shoichi

In order to investigate segregation of granular binary-mixtures in a horizontally rotating cylinder, three-dimensional molecular dynamics simulations are carried out. Two kinds of particles, which have different diameters and/or different roughness of surfaces, are segregated into three bands. It is found that particles receive averaged force cohesively at the boundaries of segregated bands. The present analysis shows that segregated narrow bands are formed by diffusion process and that the cohesive forces operating at the boundaries stabilize them.


Sign in / Sign up

Export Citation Format

Share Document