Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems

Nanoscale ◽  
2015 ◽  
Vol 7 (9) ◽  
pp. 3808-3816 ◽  
Author(s):  
V. Brunetti ◽  
L. M. Bouchet ◽  
M. C. Strumia

Nanoparticle-cored dendrimers (NCDs) are now offering themselves as versatile carriers because of their colloidal stability, tunable membrane properties and ability to encapsulate or integrate a broad range of drugs and molecules.

2014 ◽  
Vol 10 (7) ◽  
pp. 2965-2975 ◽  
Author(s):  
George R. Dakwar ◽  
Elisa Zagato ◽  
Joris Delanghe ◽  
Sabrina Hobel ◽  
Achim Aigner ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1654
Author(s):  
Lorenzo Marsili ◽  
Michele Dal Bo ◽  
Federico Berti ◽  
Giuseppe Toffoli

Microgels can be considered soft, porous and deformable particles with an internal gel structure swollen by a solvent and an average size between 100 and 1000 nm. Due to their biocompatibility, colloidal stability, their unique dynamicity and the permeability of their architecture, they are emerging as important candidates for drug delivery systems, sensing and biocatalysis. In clinical applications, the research on responsive microgels is aimed at the development of “smart” delivery systems that undergo a critical change in conformation and size in reaction to a change in environmental conditions (temperature, magnetic fields, pH, concentration gradient). Recent achievements in biodegradable polymer fabrication have resulted in new appealing strategies, including the combination of synthetic and natural-origin polymers with inorganic nanoparticles, as well as the possibility of controlling drug release remotely. In this review, we provide a literature review on the use of dual and multi-responsive chitosan-grafted-poly-(N-vinylcaprolactam) (CP) microgels in drug delivery and oncological applications.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


Sign in / Sign up

Export Citation Format

Share Document