Pyrrolophthalazine dione (PPD)-based donor–acceptor polymers as high performance electrochromic materials

2015 ◽  
Vol 6 (9) ◽  
pp. 1487-1494 ◽  
Author(s):  
Qun Ye ◽  
Wei Teng Neo ◽  
Tingting Lin ◽  
Jing Song ◽  
Hong Yan ◽  
...  

Novel solution-processable pyrrolophthalazine dione-containing electrochromic conjugated polymers with high optical contrast, high coloration efficiency, and good long-term stability were reported.

2015 ◽  
Vol 3 (43) ◽  
pp. 11318-11325 ◽  
Author(s):  
Guangming Nie ◽  
Ling Wang ◽  
Changlong Liu

An ECD based on electrochromic poly(1H-benzo[g]indole) was fabricated. The color of this ECD can switch between green and navy blue with good optical contrast, high coloration efficiency, fast response time, better optical memory and long-term stability.


2015 ◽  
Vol 6 (43) ◽  
pp. 7570-7579 ◽  
Author(s):  
Ching Mui Cho ◽  
Qun Ye ◽  
Wei Teng Neo ◽  
Tingting Lin ◽  
Xuehong Lu ◽  
...  

New ultrahigh electron-deficient acceptors pyrrolo-acenaphtho-pyridazine-diones (PAPD) were synthesized via a regio-selective inverse electron demand Diels–Alder reaction and their corresponding conjugated polymers showed electrochromism with long-term stability.


Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6521-6525 ◽  
Author(s):  
Ming Zhuo ◽  
Yuejiao Chen ◽  
Tao Fu ◽  
Haonan Zhang ◽  
Zhi Xu ◽  
...  

Ni(SO4)0.3(OH)1.4 nanobelts are utilized in a humidity sensor by a facile method. The nanobelt based sensor shows a high sensitivity, fast response and long-term stability in the sensing process.


2019 ◽  
Vol 12 (2) ◽  
pp. 675-683 ◽  
Author(s):  
Yue Wu ◽  
Hang Yang ◽  
Yan Zou ◽  
Yingying Dong ◽  
Jianyu Yuan ◽  
...  

A dialkylthio-substituted conjugated polymer is designed and synthesized as a donor material for high-performance polymer solar cells with long-term stability.


1995 ◽  
Vol 377 ◽  
Author(s):  
Mohan K. Bhan

ABSTRACTWe have systematically investigated the effects of addition of sub-ppm levels of boron on the stability of a-Si:H films and p-i-n devices, deposited by PE-CVD technique. The films thus produced with appropriate amounts of boron, show a significant improvement in stability, when soaked under both AM 1.5 (short-term) as well as 10×sun (long-term) illumination conditions. The opto-electronic properties of the films are quite respectable It is concluded that boron compensates the native impurities by forming donor-acceptor pairs, which reduces the “fast” defects and hence the initial degradation of the films. It is also speculated that boron may also be improving the short-term stability, by reducing the recombination of light generated electrons and holes, by converting D° into D+ states. The long-term stability appears to get affected by hydrogen dilution which seems to reduce the amount of “slow” defects. As a result of B doping of i-layer, the initial conversion efficiency of the devices decreases. It is presumed that our devices may contain an enhanced level of boron impurity, than expected, making them as worse material and to degrade less.


2014 ◽  
Vol 16 (36) ◽  
pp. 19307-19313 ◽  
Author(s):  
Qing Chen ◽  
Yue Hu ◽  
Chuangang Hu ◽  
Huhu Cheng ◽  
Zhipan Zhang ◽  
...  

Graphene quantum dots boost the capacitance of the graphene supercapacitor by more than 90% and with an excellent long-term stability.


2019 ◽  
Vol 55 (3) ◽  
pp. 188-192
Author(s):  
M. L. Colsoul ◽  
A. Breuer ◽  
N. Goderniaux ◽  
J. D. Hecq ◽  
L. Soumoy ◽  
...  

Background and Objective: Infusion containing lorazepam is used by geriatric department to limit anxiety disorders in the elderly. Currently, these infusions are prepared according to demand by the nursing staff, but the preparation in advance in a centralized service could improve quality of preparation and time management. The aim of this study was to investigate the long-term stability of this infusion in polypropylene syringes stored at 5 ± 3°C. Then, results obtained were compared with stability data of lorazepam in syringes stored at room temperature, glass bottles at 5 ± 3°C, and glass bottles at room temperature. Method: Eight syringes and 6 bottles of infusion were prepared by diluting 1 mL lorazepam 4 mg in 23 mL of NaCl 0.9% under aseptic conditions. Five syringes and 3 bottles were stored at 5 ± 3°C and 3 syringes and 3 bottles were stored at room temperature for 30 days. During the storage period, particle appearance or color change were periodically checked by visual and microscope inspection. Turbidity was assessed by measurements of optical density (OD) at 3 wavelengths (350 nm, 410 nm, 550 nm). The stability of pH was also evaluated. The lorazepam concentrations were measured at each time point by high-performance liquid chromatography with ultraviolet detector at 220 nm. Results: Solutions were physically unstable in syringes at 5 ± 3°C after 4 days: crystals and a drop of OD at 350 nm were observed. However, pH was stable. After 2 days, solutions were considered as chemically unstable because a loss of lorazepam concentration higher than 10% was noticed: the lower 1-sided confidence limit at 95% was below 90% of the initial concentration. To assess temperature and polypropylene influence, results were compared with those obtained for syringes at room temperature and bottles at 5 ± 3°C and room temperature. Precipitation, drop of OD at 350 nm, and chemical instability were observed in all conditions. Conclusion: Solutions of lorazepam were unstable after 2 days in syringes at 5 ± 3°C. Preparation in advance appears, therefore, not possible for the clinical use. Storage conditions (temperature and form) do not improve the stability.


Sign in / Sign up

Export Citation Format

Share Document