scholarly journals Substrate porosity induces phenotypic alterations in retinal cells cultured on silicon nanowires

RSC Advances ◽  
2014 ◽  
Vol 4 (53) ◽  
pp. 27888-27897 ◽  
Author(s):  
Gaëlle Piret ◽  
Maria-Thereza Perez ◽  
Christelle N. Prinz

Limitations of silicon nanowire arrays produced using chemical etching for drug delivery.

2012 ◽  
Vol 21 ◽  
pp. 109-115 ◽  
Author(s):  
S. Naama ◽  
T. Hadjersi ◽  
G. Nezzal ◽  
L. Guerbous

One-step metal-assisted electroless chemical etching of p-type silicon substrate in NH4HF2/AgNO3 solution was investigated. The effect of different etching parameters including etching time, temperature, AgNO3 concentration and NH4HF2 concentration were investigated. The etched layers formed were investigated by scanning electron microscopy (SEM) and Photoluminescence. It was found that the etched layer was formed by well-aligned silicon nanowires. It is noted that their density and length strongly depend on etching parameters. Room temperature photoluminescence (PL) from etched layer was observed. It was observed that PL peak intensity increases significantly with AgNO3 concentration.


2020 ◽  
Vol 15 (1) ◽  
pp. 127-135
Author(s):  
Dao Tran Cao ◽  
Cao Tuan Anh ◽  
Luong Truc Quynh Ngan

Metal-assisted chemical etching of silicon is a commonly used method to fabricate vertical aligned silicon nanowire arrays. In this report we show that if in the above method the chemical etching is replaced by the electrochemical one, we can also produce silicon nanowire arrays, but with a special characteristic-extremely strong photoluminescence. Further research showed that the huge photoluminescence intensity of the silicon nanowire arrays made by metal-assisted electrochemical etching is related to the anodic oxidation of the silicon nanowires which has occurred during the electrochemical etching. It is most likely that the luminescence of the silicon nanowire arrays made with metal-assisted electrochemical etching is the luminescence of silicon nanocrystallites (located on the surface of silicon nanowire fibers) embedded in a silicon oxide matrix, similar to that in a silicon rich oxide system.


2014 ◽  
Vol 24 (1) ◽  
pp. 105-105 ◽  
Author(s):  
Junghoon Yeom ◽  
Daniel Ratchford ◽  
Christopher R. Field ◽  
Todd H. Brintlinger ◽  
Pehr E. Pehrsson

2020 ◽  
Vol 12 (11) ◽  
pp. 13140-13147 ◽  
Author(s):  
Fedja J. Wendisch ◽  
Mehri Abazari ◽  
Hossein Mahdavi ◽  
Marcel Rey ◽  
Nicolas Vogel ◽  
...  

2012 ◽  
Vol 4 (8) ◽  
pp. 4251-4258 ◽  
Author(s):  
Bin Wang ◽  
Thomas Stelzner ◽  
Rawi Dirawi ◽  
Ossama Assad ◽  
Nisreen Shehada ◽  
...  

2011 ◽  
Vol 194-196 ◽  
pp. 598-601
Author(s):  
Xuan Liu ◽  
Li Jie Zhao ◽  
Ping Feng

Electroless metal deposition is a simple, low-cost and effective method for fabricating silicon nanowire arrays and has been used widely in micro electromechanical industry. In this paper, large-area silicon nanowire arrays are prepared successfully with mixed AgNO3and HF solution by this method at normal temperature and pressure. It has been proved the best equality of silicon nanowires can be obtained at the concentration ratio of 0.02 mol/l: 5mol/l for AgNO3and HF and 1h reaction time. The influence of nano metal particles on the growth, the wire diameter, the distribution and the array of silicon nanowires are analyzed. Experimental results show the distribution and wire diameter of silicon nanowires can be controlled effectively by nano metal particles deposited on silicon wafers. The length of silicon nanowires increases with the reaction time and the average growth velocity is predicted to be 0.5~0.7μm/min. The equality of silicon nanowires with nano Au particles is better than those with nano Pt particles. The reaction mechanism of preparing large-area silicon nanowire arrays is analyzed as the result of the deoxidization of silver ion and the removal of the oxidized silicon solution by reacting with HF.


2017 ◽  
Vol 19 (19) ◽  
pp. 11786-11792 ◽  
Author(s):  
Chia-Yun Chen ◽  
Po-Hsuan Hsiao ◽  
Ta-Cheng Wei ◽  
Ting-Chen Chen ◽  
Chien-Hsin Tang

Broad-band and high efficiency photocatalytic systems were demonstrated through the incorporation of silicon nanowires with highly fluorescent carbon nanodots.


2013 ◽  
Vol 24 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Junghoon Yeom ◽  
Daniel Ratchford ◽  
Christopher R. Field ◽  
Todd H. Brintlinger ◽  
Pehr E. Pehrsson

2020 ◽  
Vol 10 (3) ◽  
pp. 1146 ◽  
Author(s):  
Kangil Kim ◽  
Jae Keun Lee ◽  
Seung Ju Han ◽  
Sangmin Lee

Silicon nanowires are widely used for sensing applications due to their outstanding mechanical, electrical, and optical properties. However, one of the major challenges involves introducing silicon-nanowire arrays to a specific layout location with reproducible and controllable dimensions. Indeed, for integration with microscale structures and circuits, a monolithic wafer-level process based on a top-down silicon-nanowire array fabrication method is essential. For sensors in various electromechanical and photoelectric applications, the need for silicon nanowires (as a functional building block) is increasing, and thus monolithic integration is highly required. In this paper, a novel top-down method for fabricating vertically-stacked silicon-nanowire arrays is presented. This method enables the fabrication of lateral silicon-nanowire arrays in a vertical direction, as well as the fabrication of an increased number of silicon nanowires on a finite dimension. The proposed fabrication method uses a number of processes: photolithography, deep reactive-ion etching, and wet oxidation. In applying the proposed method, a vertically-aligned silicon-nanowire array, in which a single layer consists of three vertical layers with 20 silicon nanowires, is fabricated and analyzed. The diamond-shaped cross-sectional dimension of a single silicon nanowire is approximately 300 nm in width and 20 μm in length. The developed method is expected to result in highly-sensitive, reproducible, and low-cost silicon-nanowire sensors for various biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document