Hydrogen physisorption in ionic solid compounds with exposed metal cations at room temperature

RSC Advances ◽  
2014 ◽  
Vol 4 (64) ◽  
pp. 33905-33910 ◽  
Author(s):  
Kapil Pareek ◽  
Qingfan Zhang ◽  
Rupesh Rohan ◽  
Zhang Yunfeng ◽  
Hansong Cheng

Phenol- and phloroglucinol-based ionic solid complexes for room temperature hydrogen storage via physisorption.

2007 ◽  
Vol 16 (8) ◽  
pp. 1517-1523 ◽  
Author(s):  
Nor Hasridah Abu Hassan ◽  
Abdul Rahman Mohamed ◽  
Sharif Hussein Sharif Zein

2001 ◽  
Vol 706 ◽  
Author(s):  
Xiaohong Chen ◽  
Urszula Dettlaff-Weglikowska ◽  
Miroslav Haluska ◽  
Martin Hulman ◽  
Siegmar Roth ◽  
...  

AbstractThe hydrogen adsorption capacity of various carbon nanostructures including single-wall carbon nanotubes, graphitic nanofibers, activated carbon, and graphite has been measured as a function of pressure and temperature. Our results show that at room temperature and a pressure of 80 bar the hydrogen storage capacity is less than 1 wt.% for all samples. Upon cooling, the capacity of hydrogen adsorption increases with decreasing temperature and the highest value was observed to be 2.9 wt. % at 50 bar and 77 K. The correlation between hydrogen storage capacity and specific surface area is discussed.


2018 ◽  
Vol 5 (1-2) ◽  
pp. 11-27 ◽  
Author(s):  
Takeo Oku

Abstract Conditions of nuclear fusion and nuclear fusion devices were described, and some possible applications of nanomaterials for nuclear fusion devices were presented in the present article. Muon-catalyzed fusion is one of methods for nuclear fusion to cause even at room temperature or lower, and protons or heavy ions with huge energy are irradiated to metals such as beryllium or copper, which results in emission of negative or positive charged muons from the metals. An experiment using a pyroelectric power source using lithium tantalite crystal was also reported to achieve nuclear fusion in a desktop-like device. Hydrogen storage is also important for the fusion devices, and the possibility of hydrogen storage in hydrogen storage metallic alloys was studied by diffusion calculation and potential calculation of deuterium fusion. Enhancement of deuterium diffusion in the Pd alloys would be one of the key points for energy materials. Carbon(C)/copper(Cu)-based composite materials with high thermal conductivity and good stability at high temperatures were also developed by adding a small amount of titanium, which has a low enthalpy of alloy formation with C and Cu. These carbon-based materials could be a candidate material for the plasma facing components of fusion devices.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 552
Author(s):  
Bo Li ◽  
Liqing He ◽  
Jianding Li ◽  
Hai-Wen Li ◽  
Zhouguang Lu ◽  
...  

Here we report a Ti50V50-10 wt.% C alloy with a unique lattice and microstructure for hydrogen storage development. Different from a traditionally synthesized Ti50V50 alloy prepared by a melting method and having a body-centered cubic (BCC) structure, this Ti50V50-C alloy synthesized by a mechanical alloying method is with a face-centered cubic (FCC) structure (space group: Fm-3m No. 225). The crystalline size is 60 nm. This alloy may directly absorb hydrogen near room temperature without any activation process. Mechanisms of the good kinetics from lattice and microstructure aspects were discussed. Findings reported here may indicate a new possibility in the development of future hydrogen storage materials.


Sign in / Sign up

Export Citation Format

Share Document